

Neo4j 4.0 MR2 Documentation
Last Update: Monday 19 August 2019

Copyright © 2019 Neo4j, Inc.

Safe Harbour Disclaimer 7

1. Introduction 8
1.1. What is a Milestone Release? 8
1.2. Availability and Features 8
1.3. System Requirements 10
1.4. Licensing 10
1.5. How to Provide Feedback 10
1.6. How to Submit Issues 11
1.7. Further Information and Documentation 11

2. Installation 11
2.1. Neo4j 4.0 MR2 Binaries 11
2.2. DEB Installation 12

2.2.1. Prerequisites 12
2.2.2. DEB Packages 12
2.2.3. Further Checks 12

2.3. RPM Installation 13
2.3.1. Prerequisites 13
2.3.2. RPM Archives 13
2.3.3. Further Checks 14

2.4. Tarball Installation 14
2.4.1. Prerequisites 14
2.4.2. Tarball Installation 14
2.4.3. Further Checks 15

2.5. Windows Installation 15
2.6. Docker Installation 15
2.7. Post-Installation 17

2.7.1. Setting the Initial Password 17
2.7.2. Starting Neo4j 17

 2 Copyright © 2019 Neo4j, Inc.

3. Managing Databases 18
3.1. Concepts 18

3.1.1. DBMS, Servers, Instances 18
3.1.2. Transaction Domain and Execution Context 18
3.1.3. Database 18
3.1.4. Databases and DBMS 19
3.1.5. Separation of Structure 19
3.1.6. Rules for Database Names 19
3.1.7. Community Edition 20
3.1.8. Enterprise Edition 20
3.1.9. Default database 21

3.2. Configuration Parameters 21
3.2.1. Examples 22

3.3. Commands for Managing Databases 22
3.3.1 Switching Databases 22
3.3.2. Cypher Administrative Commands 23

3.3.2.1. SHOW DATABASE 24
3.3.2.2. SHOW DATABASES 24
3.3.2.3. SHOW DEFAULT DATABASE 25
3.3.2.4. CREATE DATABASE 26
3.3.2.5. STOP DATABASE 26
3.3.2.6. START DATABASE 27
3.3.2.7. DROP DATABASE 28

3.4 Databases in Causal Cluster Installations 30
3.4.1 Executing Cypher Administrative Commands from Cypher Shell 30

3.4.2 Executing Cypher Administrative Commands from Neo4j Browser 33

4. Security Features 36
4.1. Role-Based Access Control and Fine-Grained Security 36

4.1.1. Entities 37

 3 Copyright © 2019 Neo4j, Inc.

4.1.2. Privileges 38
4.1.3. Grantees 38
4.1.4. Granting and Denying Privileges 39

4.1.4.1. Fine-Grained Security 39
4.1.4.2. The GRANT/DENY Commands 40
4.1.4.3. GRANT Examples 42

4.2 Security Model in Neo4j 4.0 vs. Other DBMSs 43
4.3. User Management 44

4.3.1. Cypher Commands for User Management 44
4.3.2. Creating a New User 45

4.3.2.1. CREATE USER Example 46
4.3.3. Removing an Existing User 46
4.3.4. Modifying the Settings of an Existing User 46

4.3.4.1. ALTER USER Examples 47
4.3.5. Listing All Users 48
4.3.6. Listing Privileges for a User 48
4.3.7. Changing your own password 49

4.4. Role Management 50
4.4.1. Built-in Roles 51
4.4.2. Cypher Commands for Role Management 52
4.4.3. Creating a New Role 52
4.4.4. Removing an Existing Role 53
4.4.5. Modifying Existing Roles 53
4.4.6. Listing Roles 55
4.4.7. Granting Roles to Users 57
4.4.8. Revoking Roles from Users 57
4.4.9. Listing privileges 57

4.5. Security Walk-through: Label-Based Security 62
4.5.1. The Graph 62
4.5.2. Users and Roles 63

 4 Copyright © 2019 Neo4j, Inc.

4.5.3. Data Return from MATCH queries 65
4.5.4. Removing the TRAVERSE Privilege 67
4.5.5. Another Example with TRAVERSE 70

4.6. Security Walk-through: Combining GRANT and DENY 71
4.6.1. The Graph 71
4.6.2. Users and Roles 73
4.6.3. Example queries 74

5. Drivers and Client/Server Connectivity 80
5.1. Bolt Server 80
5.2. Database Selection 80

5.2.1. Java driver 81
5.2.2. Javascript driver 81

5.3. Back Pressure 82
5.4. HTTP Server 83
5.5. Drivers 83
5.6. Spring Boot 84
5.7. Cypher Shell 87

5.7.1. Initial Use of Cypher Shell 87
5.7.2. New Cypher Shell Arguments 88
5.7.3. New Cypher Shell Environment variables 89
5.7.4. The neo4j Scheme 89
5.7.5. The :use Command 90

5.8. Neo4j Browser 91
5.8.1. Database Selection in Neo4j Browser 93

6. SDN-RX 93
6.1 Introduction 94

6.1.1. SDN-RX and Neo4j OGM 94
6.1.2. SDN-RX and Embedded Neo4j 95

6.2 Getting Started 95

 5 Copyright © 2019 Neo4j, Inc.

6.2.1. Preparing the Database 96
6.2.2. Create a New Spring Boot Project 97

6.2.2.1. Maven 97
6.2.2.2. Gradle 98
6.2.2.3. Configuration 99

6.2.3. Creating a Domain 99
6.2.3.1. Example Node-Entity 99
6.2.3.2. Declaring Spring Data Repositories 103

6.3. Neo4j Client 105
6.3.1. Imperative and Reactive 106
6.3.2. Getting an Instance of the Client 107
6.3.3. Usage 108

6.3.3.1. Selecting the Target Database 109
6.3.3.2. Specifying Queries 109
6.3.3.3. Retrieving Results 110
6.3.3.4. Mapping Parameters 111
6.3.3.5. Working with Result Objects 114
6.3.3.6. Interacting Directly with the Driver While Using Managed Transactions 115

6.4. Migrating from SDN+OGM to SDN-RX 116
6.4.1. Known Issues with Past SDN+OGM Migrations 116
6.4.2. Preparation for Migration from SDN+OGM Lovelace or SDN+OGM Moore 117
6.4.3 Migrating 118

7. Other Features 120
7.1. Index Population for the Native Index Provider 120

7.1.1. Improvement in Index Population 120
7.2. Native Index Provider Max Key Size 121
7.3. Lucene Index Provider 121

 6 Copyright © 2019 Neo4j, Inc.

Safe Harbour Disclaimer
The features available in Neo4j 4.0 MR2 are experimental and they are likely to change in future versions of Neo4j: please consider the nature of the
current implementation of these features when you use them.

Neo4j reserves the right to change features and product plans at any time, without obligation to notify any person of such changes.

 7 Copyright © 2019 Neo4j, Inc.

1. Introduction
Neo4j 4.0 MR2 is the second Milestone Release of the new major version of the world’s leading graph database. This release provides exciting new
features that can be tested by installing and trying this early release.

IMPORTANT Neo4j 4.0 MR2 should not be used in production, nor should users expect production-quality features. In testing this release you
may encounter technical issues that can corrupt your data.

1.1. What is a Milestone Release?
A Milestone Release - MR in short - is a very early stage release that provides only a limited subset of features that will appear in a future Generally
Available (GA) release. From a quality standpoint, an MR can be considered a pre-alpha release, therefore performance and stability issues may
appear and should be reported to Neo4j.

1.2. Availability and Features
Neo4j 4.0 MR2 is an Enterprise Edition release and it is offered as-is, binaries only. Community Edition code and binaries will not be available: we will
publish Community Edition in line with the normal release cycle (Alpha > Beta > Release Candidate > Generally Available release).

The table below shows the features introduced in Neo4j 4.0 MR2:

Feature Description Community Edition Enterprise Edition

Multiple Databases Ability to create and use more than one database active at
the same time.

One user database and one
system (metadata) database

Multiple user databases and
one system (metadata)
database

Reactive Drivers Client drivers providing reactive streams capabilities.
JavaScript and Java driver only in MR2.

Available Available

 8 Copyright © 2019 Neo4j, Inc.

https://www.reactive-streams.org/

Back Pressure and
Flow Control

Client drivers benefitting from server-side flow control,
result set may be temporarily kept in the server and
retrieved in chunks, synchronously or asynchronously.
JavaScript and Java driver only in MR2.

Available Available

Spring Boot New starter, used to configure the Neo4j Java Driver within
a Spring Boot.

Available Available

SDN/RX Spring Data Neo4j based on reactive streams. Available Available

Role-Based Access
Control for Graphs

New RBAC security, applicable to graphs and graph
elements.

Not available Available

User Management Administration commands used to manage users. Available, without user
suspend/activate

Available

Role Management for
Graphs

Administration commands used to manage roles and
association of privileges to roles and roles to users.

Not available Available

Role Management for
Databases

Administrative commands used to manage the database
access rights associated with roles.

Not available Available

Index Population
Algorithm

New improved algorithm for the Native Index Provider
(GB+Tree indexes).

Available Available

Index Key Size Increased Max Index Key Size (~8KB) for the Native Index
Provider (GB+Tree).

Available Available

Improved Space
Reclaim

The ID store has been re-engineered to remove corner
cases where space reclaim after the deletion of graph
elements was suboptimal. The new approach benefits both
standalone and clustered systems.

Available Available

 9 Copyright © 2019 Neo4j, Inc.

1.3. System Requirements
Neo4j 4.0 MR2 requires this minimal physical or virtual hardware requirements:

● 64-bit Intel-based CPU architecture (x86_64)
● 2 GByte RAM
● 10 GByte disk space

MR2 has been tested on the following operating systems:

● Ubuntu 18.04
● RedHat and Centos 7
● Windows Server 2016
● Mac OS 10.14

Neo4j 4.0 MR2 requires Java 11; tests have been performed using OpenJDK 11 and Oracle Java 11. This requirement is also applicable to Cypher Shell,
which is available with the server.

The client Java driver can be executed using Java 8 or Java 11.

1.4. Licensing
Neo4j 4.0 MR2 is released under the Neo4j Pre-Release Agreement for Neo4j Software. Under the agreement, users are entitled to use the Milestone
Release for a period of thirty days.

1.5. How to Provide Feedback
The main objective of the Milestone Release is to collect feedback from users and improve the experience of the future GA release.
You can provide feedback by using the Neo4j Community Forum - https://community.neo4j.com/c/neo4j-graph-platform.

 10 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/terms/neo4j-pre-release-agreement-bg
https://community.neo4j.com/c/neo4j-graph-platform

1.6. How to Submit Issues
We warmly welcome any report of bugs and technical issues of the Milestone Release.
Although MR2 is not officially supported, issues may be reported on the Neo4j public repository - https://github.com/neo4j/neo4j/issues.
if you are a Neo4j customer, you may add a new ticket via the customer support portal.

1.7. Further Information and Documentation
Further information that is not covered in this document may be found in the Neo4j 3.5 manuals:

● Neo4j Operations Manual
● Neo4j Cypher Manual
● Neo4j Drivers Manual

2. Installation

2.1. Neo4j 4.0 MR2 Binaries
The binaries of Neo4j 4.0 MR2 are available on the Neo4j website, in the Downloads section: https://neo4j.com/download

In addition, these are the links to other binaries:

● Cypher Shell for CentOS 7 and RedHat 7: http://dist.neo4j.org/cypher-shell-1.2.0-0.alpha03.1.noarch.rpm
● Cypher Shell for Debian 9 and Ubuntu 18.04: http://dist.neo4j.org/cypher-shell_1.2.0.alpha03_all.deb
● DEB package for Debian 9 and Ubuntu 18.04: http://dist.neo4j.org/neo4j-enterprise_4.0.0_alpha09mr02_all.deb
● RPM package for CentOS 7 and RedHat 7: http://yum.neo4j.org/testing/neo4j-enterprise-4.0.0-0.alpha09mr02.1.noarch.rpm
● Docker image: http://dist.neo4j.org/neo4j-enterprise-4.0.0-alpha09mr02-docker-complete.tar

 11 Copyright © 2019 Neo4j, Inc.

https://github.com/neo4j/neo4j/issues
https://neo4j.com/docs/operations-manual/3.5
https://neo4j.com/docs/cypher-manual/3.5
https://neo4j.com/docs/driver-manual/1.7
https://neo4j.com/download
http://dist.neo4j.org/cypher-shell-1.2.0-0.alpha03.1.noarch.rpm
http://dist.neo4j.org/cypher-shell_1.2.0.alpha03_all.deb
http://dist.neo4j.org/neo4j-enterprise_4.0.0_alpha07mr01_all.deb
http://yum.neo4j.org/testing/neo4j-enterprise-4.0.0-0.alpha09mr02.1.noarch.rpm
http://dist.neo4j.org/neo4j-enterprise-4.0.0-alpha09mr02-docker-complete.tar

2.2. DEB Installation
DEB packages can be used for Debian 9 and Ubuntu 18.04 environments.

2.2.1. Prerequisites
Neo4j 4.0 MR2 requires Java 11 Runtime and the daemon package. You can update your testing environment with the following commands:

sudo apt install openjdk-11-jre

sudo apt install daemon

2.2.2. DEB Packages
Neo4j 4.0 MR2 comes in two Debian packages, and must be installed in this order: Cypher Shell and Neo4j Server.

First, you need to add the testing repository to the list of the available source for packages:

echo 'deb https://debian.neo4j.org/repo testing/' | sudo tee -a /etc/apt/sources.list.d/neo4j.list

sudo apt-get update

Then you can install the packages:

sudo apt-get install cypher-shell=1.2.0~alpha04

sudo apt-get install neo4j=1:4.0.0~alpha09mr02

2.2.3. Further Checks
Check the number of open file descriptors available for your process using the command ulimit -n . The number should be greater than 60000.
For further information regarding this limit and how to increase it, you can follow this link.

 12 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/operations-manual/current/installation/linux/tarball/#linux-open-files

2.3. RPM Installation
RPM archives can be used for CentOS 7 and RedHat 7 environments.

2.3.1. Prerequisites
Neo4j 4.0 MR2 requires Java 11 Runtime. You can update your testing environment with the following command:

sudo yum install java-11-openjdk-devel

2.3.2. RPM Archives
Neo4j 4.0 MR2 comes in two RedHat archives, and must be installed in this order: Cypher Shell and Neo4j Server.

First, you need to add the testing repository to the list of the available source for packages:

cd /tmp

wget http://debian.neo4j.org/neotechnology.gpg.key

rpm --import neotechnology.gpg.key

cat <<EOF> /etc/yum.repos.d/neo4j.repo

[neo4j]

name=Neo4j Yum Repo

baseurl=http://yum.neo4j.org/testing

enabled=1

gpgcheck=1

EOF

Then you can install the packages:

yum install cypher-shell-1.2.0-0.alpha04.1

yum install neo4j-4.0.0-0.alpha09mr02.1

 13 Copyright © 2019 Neo4j, Inc.

2.3.3. Further Checks
Check the number of open file descriptors available for your process using the command ulimit -n . The number should be greater than 60000.
For further information regarding this limit and how to increase it, you can follow this link.

2.4. Tarball Installation

2.4.1. Prerequisites
Neo4j 4.0 MR2 requires Java 11 Runtime.

In Debian and Ubuntu environments, you can update your testing environment with the command:

sudo apt install openjdk-11-jre

In CentOS and RedHat environments, you can use this command:

sudo yum install java-11-openjdk-devel

In macOS you have different ways to install Java. One option is to download Java from the official Java Website as a tarball, extract the content of the
archive and finally set the PATH and JAVA_HOME environment variables make the environment available for Neo4j.
Alternatively, you can accept the license agreement, download and install a Java Mac OS package from the official Oracle Java website.

2.4.2. Tarball Installation
Once you have located the tarball in your test environment, extract the content of the archives with the tar -xzvf command.

For example:

tar xzvf neo4j-enterprise-4.0.0-alpha09mr02-unix.tar.gz

 14 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/operations-manual/current/installation/linux/tarball/#linux-open-files
https://jdk.java.net/archive

2.4.3. Further Checks
Check the number of open file descriptors available for your process using the command ulimit -n . The number should be greater than 60000. For
further information regarding this limit and how to increase it, you can follow this link.

The last check is Java; you may want to verify if you have access to the Java 11 environment.
One of the ways to verify the current version of Java is by running the java -version command:

$ java -version
openjdk version "11.0.3" 2019-04-16

OpenJDK Runtime Environment (build 11.0.3+7-Ubuntu-1ubuntu218.04.1)

OpenJDK 64-Bit Server VM (build 11.0.3+7-Ubuntu-1ubuntu218.04.1, mixed mode, sharing)

If the java command returns a different version (for example Java 8) it is likely that your testing environment has another version of Java pre-installed.
You should check the position of the new Java 11 and set PATH and JAVA_HOME environment variables accordingly.

2.5. Windows Installation
The Windows ZIP file can be tested on all the 64 bit server and desktop versions of Windows.

As a prerequisite, install the Java Runtime JRE 11 on Windows and make sure that java.exe is available through the global PATH .

The next step is to unarchive the ZIP file in your chosen location, then follow the instructions provided here.

2.6. Docker Installation
The TAR file contains the docker image to install in your docker environment.

Once you have located your archive, load the image with the following command (you may need to be superuser):

 15 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/operations-manual/current/installation/linux/tarball/#linux-open-files
https://neo4j.com/docs/operations-manual/current/installation/windows

docker load < neo4j-enterprise-4.0.0-alpha09mr02-docker-complete.tar

Next, check the image id of Neo4j 4.0 MR2 with the docker image ls command. For example:

$ sudo docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE

neo4j-enterprise 4.0.0-alpha09mr02 1e666dc35122 8 days ago 646MB

Create a data and a log directory that will be used by the container and finally launch the image:

$ mkdir neo4j
$ cd neo4j
$ mkdir logs
$ mkdir data
$ docker run --publish=7474:7474 \
 --publish=7687:7687 \

 --volume=$HOME/neo4j/data:/data \

 --volume=$HOME/neo4j/logs:/logs \

 --env=NEO4J_ACCEPT_LICENSE_AGREEMENT=yes \

 1e666dc35122

Warning: Folder mounted to "/logs" is not writable from inside container. Changing folder owner to neo4j.

Warning: Folder mounted to "/data" is not writable from inside container. Changing folder owner to neo4j.

Directories in use:

 home: /var/lib/neo4j

 config: /var/lib/neo4j/conf

 logs: /logs

 plugins: /var/lib/neo4j/plugins

 import: /var/lib/neo4j/import

 data: /var/lib/neo4j/data

 certificates: /var/lib/neo4j/certificates

 run: /var/lib/neo4j/run

Starting Neo4j.

2019-07-11 21:21:46.140+0000 INFO ======== Neo4j 4.0.0-alpha09mr02 ========

2019-07-11 21:21:46.155+0000 INFO Starting…

 16 Copyright © 2019 Neo4j, Inc.

WARNING: An illegal reflective access operation has occurred

WARNING: Illegal reflective access by org.eclipse.collections.impl.utility.ArrayListIterate

(file:/var/lib/neo4j/lib/eclipse-collections-9.2.0.jar) to field java.util.ArrayList.elementData

WARNING: Please consider reporting this to the maintainers of

org.eclipse.collections.impl.utility.ArrayListIterate

WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations

WARNING: All illegal access operations will be denied in a future release

2019-07-11 21:21:55.655+0000 INFO Sending metrics to CSV file at /var/lib/neo4j/metrics

2019-07-11 21:21:56.926+0000 INFO Bolt enabled on 0.0.0.0:7687.

2019-07-11 21:21:56.927+0000 INFO Started.

2019-07-11 21:21:57.139+0000 INFO Mounted REST API at: /db/manage

2019-07-11 21:21:57.315+0000 INFO Server thread metrics have been registered successfully

2019-07-11 21:21:58.873+0000 INFO Remote interface available at http://localhost:7474/

2.7. Post-Installation

2.7.1. Setting the Initial Password
As for the previous versions of Neo4j, Neo4j 4.0 MR2 requires to set an initial password for the neo4j user. This can be achieved by executing the
neo4j-admin script in the bin directory:

bin/neo4j-admin set-initial-password mysecretpassword

2.7.2. Starting Neo4j
If you have installed Neo4j from a tarball, locate the installed directory. From the Neo4j home directory, you can start the server using the neo4j script
in the bin directory:

bin/neo4j start

If you have installed a Neo4j package (Debian or RedHat), Neo4j 4.0 MR2 has been set as a service and it can be managed using the systemctl
command. Follow this link to manage Neo4j as a service.

 17 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/operations-manual/current/installation/linux/systemd

3. Managing Databases
Neo4j 4.0 offers new database functionalities. Up to Neo4j 3.5, database administrators (DBAs) could create multiple databases, but only one database
was active at startup. In this new version, we can have multiple databases active and accessible at the same time.

3.1. Concepts
Before we present the new features of Neo4j 4.0 with regards to databases, it is important to define some terms and basic concepts.

3.1.1. DBMS, Servers, Instances
Neo4j is a DataBase Management System - DBMS in short. A DBMS can be a single standalone server or a group of servers (for example in a Causal
Cluster).

A Neo4j instance is a Java process that is running the Neo4j server code.

3.1.2. Transaction Domain and Execution Context
A transaction domain is a collection of graphs that can be updated within the context of a single transaction.

An execution context is a runtime environment for the execution of a request. In practical terms, a request may be a query, a transaction or an internal
function or procedure.

3.1.3. Database
A database is an administrative partition of a DBMS. In practical terms, it is a physical structure of files organised within a directory or folder that has the
same name of the database. In logical terms, a database is a container for one or more graphs. In MR2, a database is a container for one graph only.

A database defines a transaction domain and an execution context. This means that a transaction cannot span across multiple databases. Similarly, a
procedure is called within a database, although its logic may access data that is stored in other databases.

 18 Copyright © 2019 Neo4j, Inc.

3.1.4. Databases and DBMS
A DBMS has at least two databases:

● A database containing Neo4j metadata - this has a non-configurable name of system .
● A database for user data - the default name for this database is neo4j .

3.1.5. Separation of Structure

Databases are structurally separated, in that the database files for each database are stored in a separate folder. In MR2, relationships cannot be
defined between nodes in different databases and graphs cannot span across multiple databases.

3.1.6. Rules for Database Names
The naming rules for databases are designed to be file system friendly, and cloud friendly:

● Length must be between 3 and 63 characters.
● The first character of a name must be an ASCII alphabetic character.
● Subsequent characters must be ASCII alphabetic or numeric characters, dots or dashes: [a..z][0..9].-
● Names are case-insensitive, and normalized to lowercase.
● Names that begin with an underscore and with the prefix system are reserved for internal use.

 19 Copyright © 2019 Neo4j, Inc.

3.1.7. Community Edition

The DBMS can manage one database for user data. The system database is present in each instance.

A default Neo4j installation with Community Edition

3.1.8. Enterprise Edition

The DBMS can manage multiple databases. The system database is present in each instance.

A Neo4j installation with Enterprise Edition, managing three different databases with the names marketing, sales and hr.

 20 Copyright © 2019 Neo4j, Inc.

3.1.9. Default database

Each Neo4j instance has a default database. If a user connects to Neo4j without specifying a database, it will connect to the default database.

A Neo4j instance with three databases. The sales database is the default database.

3.2. Configuration Parameters
Configuration parameters are defined in the neo4j.conf file.

The following configuration parameters are applicable for managing databases:

Parameter Name Description Default
Value

dbms.default_database Name of the default database for the Neo4j instance. The database is created if it does not exist when
the instance starts.

neo4j

dbms.max_databases Maximum number of databases that can be used in a Neo4j instance or Neo4j Cluster. The number
includes all the online and offline databases. The value is an integer with a minimum value of 2

100

 21 Copyright © 2019 Neo4j, Inc.

3.2.1. Examples

The following example illustrates how to specify a name for the default database:

dbms.default_database=sales

The following example illustrates how to specify a maximum number of databases for this instance:

dbms.max_databases=100

3.3. Commands for Managing Databases
Neo4j 4.0 MR2 offers a new set of Cypher administrative commands, which include commands to manage databases.

All administrative commands must be executed against the system database.

3.3.1 Switching Databases

The :use command is a client command used in Cypher Shell and Neo4j Browser to initiate a session to a database. All subsequent commands are
executed against that database. If the :use command is executed without a database name, it initiates a session to the default database.

The :use command used with a database name:

neo4j@neo4j>

neo4j@neo4j> :use system
neo4j@system>

The :use command used without a database name:

 22 Copyright © 2019 Neo4j, Inc.

neo4j@system>

neo4j@system> :use
neo4j@neo4j>

The :use command can be unsuccessful, for instance because it cannot connect to the given database.

NOTE

If using Cypher Shell in interactive mode, the connection to the previous database will be intact. In non-interactive mode, i.e. when
executing a Cypher script, the execution will fail. If the --fail-at-end flag is provided in non-interactive mode, however, Cypher Shell
will be in a disconnected mode after a failed :use command. This behavior protects against inadvertently applying changes to the
previous database.

Refer to the driver documentation in section 5.2 for instructions on how to select a database using client code.

3.3.2. Cypher Administrative Commands

The following Cypher administrative commands are used to manage databases:

Command Description

CREATE DATABASE name Create and start a new database

DROP DATABASE name Drop (remove) an existing database
NOTE: This command is not available in MR2.

START DATABASE name Start a database that has been stopped

STOP DATABASE name Shut down a database

SHOW DATABASE name Show the status of a specific database

 23 Copyright © 2019 Neo4j, Inc.

SHOW DATABASES Show the name and status of all the databases

SHOW DEFAULT DATABASE Show the name and status of the default database

The following series of commands demonstrate the usage of the Cypher commands for managing databases, using Cypher Shell. The examples
assume that we have a standard installation containing the default database neo4j and that we are logged in as user neo4j in the system database.
For instructions on changing databases, see section 3.3.0.

NOTE Remember that all administrative commands must be executed against the system database.

3.3.2.1. SHOW DATABASE

Show the status of database neo4j :

neo4j@system> SHOW DATABASE neo4j;
+------------------------------+

| name | status | default |

+------------------------------+

| "neo4j" | "online" | TRUE |

+------------------------------+

3.3.2.2. SHOW DATABASES

Show the status of all databases:

 24 Copyright © 2019 Neo4j, Inc.

neo4j@system> SHOW DATABASES;
+-------------------------------+

| name | status | default |

+-------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

+-------------------------------+

The possible values for the status are:

● Online - if the database is running.
● Offline - if the database is not running.

Switching between these states is achieved using the START DATABASE and STOP DATABASE commands described below.

3.3.2.3. SHOW DEFAULT DATABASE

The config setting dbms.default_database defines which database is created and started by default when Neo4j starts. The default value of this
setting is neo4j . In Community Edition, this is the only available database (other than the system database, which is always there). In Enterprise
Edition there can be more databases, but this is the one created automatically if it does not exist. The above commands listed the default database as
a column with only one TRUE value. However it is also possible to show only the default database using the command:

neo4j@system> SHOW DEFAULT DATABASE;
+--------------------+

| name | status |

+--------------------+

| "neo4j" | "online" |

+--------------------+

Changing the default database requires editing the config setting dbms.default_database and restarting the server.

 25 Copyright © 2019 Neo4j, Inc.

3.3.2.4. CREATE DATABASE

Create a database with the name sales :

neo4j@system> CREATE DATABASE sales;
+--------------------+

| name | status |

+--------------------+

| "sales" | "online" |

+--------------------+

1 row available after 58 ms, consumed after another 0 ms

Added 1 nodes, Set 4 properties, Added 1 labels

neo4j@system> SHOW DATABASES;
+-------------------------------+

| name | status | default |

+-------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

| "sales" | "online" | FALSE |

+-------------------------------+

3 rows available after 6 ms, consumed after another 0 ms

neo4j@system>

3.3.2.5. STOP DATABASE

Stop the database sales and try using it after stopping it:

 26 Copyright © 2019 Neo4j, Inc.

neo4j@system> STOP DATABASE sales;
0 rows available after 18 ms, consumed after another 6 ms

neo4j@system> SHOW DATABASES;
+--------------------------------+

| name | status | default |

+--------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

| "sales" | "offline" | FALSE |

+--------------------------------+

3 rows available after 5 ms, consumed after another 1 ms

neo4j@system> :use sales
The database is not currently available to serve your request, refer to the database logs for more details.

Retrying your request at a later time may succeed.

neo4j@sales[UNAVAILABLE]>

3.3.2.6. START DATABASE

Start the database sales and try using it after starting it:

neo4j@sales[UNAVAILABLE]> :use system
neo4j@system>

neo4j@system> START DATABASE sales;
0 rows available after 21 ms, consumed after another 1 ms

neo4j@system> SHOW DATABASES;
+-------------------------------+

| name | status | default |

+-------------------------------+

| "neo4j" | "online" | TRUE |

 27 Copyright © 2019 Neo4j, Inc.

| "system" | "online" | FALSE |

| "sales" | "online" | FALSE |

+-------------------------------+

3 rows available after 5 ms, consumed after another 0 ms

neo4j@system> :use sales
neo4j@sales>

3.3.2.7. DROP DATABASE

Drop the database sales :

neo4j@sales> :use system
neo4j@system> DROP DATABASE sales;
0 rows available after 82 ms, consumed after another 1 ms

neo4j@system> SHOW DATABASES;
+-------------------------------+

| name | status | default |

+-------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

+-------------------------------+

2 rows available after 5 ms, consumed after another 1 ms

neo4j@system>

NOTE This command is not available in MR2.

 28 Copyright © 2019 Neo4j, Inc.

 29 Copyright © 2019 Neo4j, Inc.

3.4 Databases in Causal Cluster Installations

Causal Cluster provides multiple databases as if it is a single, standalone DBMS. Administrators can use the same Cypher commands
described above to manage databases. This is based on two main principles:

1. All databases are available on all members of a cluster - this applies to core servers and read replicas.
2. Administrative commands must be executed from the system database on the LEADER member of the cluster - as for a standalone

server, where Cypher commands to administer databases must be executed from the system database and they often change the
content of the repository, similarly in a clustered environment an administrator must connect to the LEADER member to update the
repository.

3.4.1 Executing Cypher Administrative Commands from Cypher Shell

Let’s assume we have a Causal Cluster environment formed by 5 members, 3 core servers and 2 read replicas:

 neo4j@neo4j> CALL dbms.cluster.overview();
 +---+

 | id | addresses | databases | groups |

 +---+

 | "8c...3d" | ["bolt://localhost:7683", "http://localhost:7473", "https://localhost:7483"] | {neo4j: "FOLLOWER", system: "FOLLOWER"} | [] |

 | "8f...28" | ["bolt://localhost:7681", "http://localhost:7471", "https://localhost:7481"] | {neo4j: "LEADER", system: "LEADER"} | [] |

 | "e0...4d" | ["bolt://localhost:7684", "http://localhost:7474", "https://localhost:7484"] | {neo4j: "READ_REPLICA", system: "READ_REPLICA"} | [] |

 | "1a...64" | ["bolt://localhost:7682", "http://localhost:7472", "https://localhost:7482"] | {neo4j: "FOLLOWER", system: "FOLLOWER"} | [] |

 | "59...87" | ["bolt://localhost:7685", "http://localhost:7475", "https://localhost:7485"] | {neo4j: "READ_REPLICA", system: "READ_REPLICA"} | [] |

 +---+

 5 rows available after 5 ms, consumed after another 0 ms

The leader is currently the instance exposing port 7681 for the bolt protocol and 7471/7481 for the http/https protocol.

Administrators can connect and execute Cypher commands in two ways:

 30 Copyright © 2019 Neo4j, Inc.

1. Using the bolt:// scheme to connect to the LEADER. For example, considering the cluster described above:

$ bin/cypher-shell -a bolt://localhost:7681 -d system -u neo4j -p neo4j1
Connected to Neo4j 4.0.0 at bolt://localhost:7681 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@system> SHOW DATABASES;
+-------------------------------+

| name | status | default |

+-------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

+-------------------------------+

2 rows available after 34 ms, consumed after another 0 ms

neo4j@system> CREATE DATABASE data001;
0 rows available after 378 ms, consumed after another 12 ms

Added 1 nodes, Set 4 properties, Added 1 labels

neo4j@system> SHOW DATABASES;
+--------------------------------+

| name | status | default |

+--------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

| "data001" | "online" | FALSE |

+--------------------------------+

3 rows available after 2 ms, consumed after another 1 ms

neo4j@system>

 31 Copyright © 2019 Neo4j, Inc.

2. Using the neo4j:// scheme to connect to any core member. The scheme, new in Neo4j 4.0, is equivalent to the bolt+routing:
scheme available in Neo4j 3.5, but it can be used seamlessly with standalone and clustered DBMS.
Again, considering the cluster described above:

$ bin/cypher-shell -a neo4j://localhost:7683 -d system -u neo4j -p neo4j1
Connected to Neo4j 4.0.0 at neo4j://localhost:7683 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@system> SHOW DATABASES;
+--------------------------------+

| name | status | default |

+--------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

| "data001" | "online" | FALSE |

+--------------------------------+

3 rows available after 0 ms, consumed after another 0 ms

neo4j@system> CREATE DATABASE data002;
0 rows available after 8 ms, consumed after another 1 ms

Added 1 nodes, Set 4 properties, Added 1 labels

neo4j@system> SHOW DATABASES;
+--------------------------------+

| name | status | default |

+--------------------------------+

| "neo4j" | "online" | TRUE |

| "system" | "online" | FALSE |

| "data001" | "online" | FALSE |

| "data002" | "online" | FALSE |

+--------------------------------+

4 rows available after 33 ms, consumed after another 0 ms

neo4j@system>

 32 Copyright © 2019 Neo4j, Inc.

3.4.2 Executing Cypher Administrative Commands from Neo4j Browser

Assuming the same clustering structure presented in the previous paragraph, administators can use a similar approach to connect and execute
Cypher commands:

1. Opening Neo4j Browser, with the bolt:// scheme, it is first important to identify the LEADER server, then connect and select the system
database.

2. Using the neo4j:// scheme, administrators can connect to any core member. Here is a series of screenshots:
a. Connect to a Browser instance using the neo4j:// scheme:

 33 Copyright © 2019 Neo4j, Inc.

b. Neo4j Browser shows the current connection:

c. Select the system database:

 34 Copyright © 2019 Neo4j, Inc.

d. Execute administrative commands:

 35 Copyright © 2019 Neo4j, Inc.

4. Security Features

Neo4j 4.0 MR2 provides a sophisticated set of security features that are used to control user access to databases and graphs. The new features fall
under one of the three categories below:

● Schema-based security - the ability to grant or deny specific access to an object (a graph or a graph element) with a given label, type or
property.

● User Management - the ability to manage users in terms of authentication and authorization.
● Role Management - the ability to assign privileges to a role and associate a role to one or more users.

4.1. Role-Based Access Control and Fine-Grained Security

Security in Neo4j 4.0 is based on lists of privileges that grant or deny access on an object to a grantee. The grantee is a role, i.e. an abstract element
that groups a list of grants and denies; a user can be associated to one or more roles, acquiring the lists associated to the roles.

This security approach goes under the name of Role-Based Access Control, and it is commonly used in DBMSs. In Neo4j 4.0, the security process is:

1. A DBA identifies an entity (a graph or a graph element).
2. The access to the entity is associated with a granted privilege.
3. The privilege is associated with one or more roles.
4. The role is associated with one or more users.

 36 Copyright © 2019 Neo4j, Inc.

The figure below shows the relationship between users and roles, roles and privileges, privileges and entities.

NOTE
As with all other Cypher administrative commands, granting and denying privileges to a role as well as assigning roles to users, must be
done in the system database. Granted/denied privileges and the corresponding roles can then be made available to ALL databases,
unless otherwise specified.

Neo4j 4.0 provides a fine level of grants over the graphs that be accessed by a user. Administrators can grant or deny access in reading and writing
(creating, modifying and removing objects), for graphs, graph elements (i.e. nodes and relationships) and for properties within elements. This
approach goes under the name of Fine-Grained Security, since administrator may grant or deny access to a user on an individual property in an
individual graph element.

 37 Copyright © 2019 Neo4j, Inc.

4.1.1. Entities
‘Entity’ is a generic term to identify an object or a component in a DBMS. In Neo4j 4.0 MR2, we control access to the following entities:

● Graphs - A persistently stored graph structure. In Neo4j 4.0 MR2 there is only one graph per database and commands can refer to that graph
using the database name. This graph can be understood to be the set of all graph elements in the database.

● Graph Elements - the components of a graph:
○ Nodes - An object in a graph, used to store different kinds of data, such as information about a business entity for example.
○ Relationships - An object in the graph that connects two nodes, used to store information about how different kinds of data are related.

NOTE
In Neo4j 4.0 there is support for multiple databases, but not multiple graphs per database. This means that security commands that
specify a graph by name are in fact referring to the single graph in the database by that name. In future versions with multiple graphs
per database, it will be possible to be more specific in these security commands.

4.1.2. Privileges
The privileges granted to a role and the role granted to a user, determine which operations a user can perform. The privileges available in Neo4j 4.0
MR2 are:

● TRAVERSE - This privilege provides the ability to find a graph element during the execution of a query. Graph elements are identified primarily
by their label or relationship type.
For a user with only this privilege, the query would not be able to read or write properties in the traversed object, but it would be able to find
and use the object in order to traverse to other objects.

● READ - This privilege provides the ability to read the properties of graph elements. Please note that the READ privilege does not provide the
ability to find the element.

● MATCH - This privilege provides the ability to both find and read the contents of elements. It is a combination of TRAVERSE and READ , and is
designed as a convenient method for achieving the same combination necessary to execute some specific Cypher MATCH commands. When
listing privileges with the SHOW PRIVILEGES command you will only be able to see the underlying find (TRAVERSE) and read (READ) privileges.

● WRITE - This privilege provides the ability to perform updates to the graph. In MR2 it is only possible to grant global write permissions, so users
with this privilege will be able to perform all data write operations (creating nodes and relationships, setting properties, assigning labels and
deleting and unsetting elements, properties and labels).

 38 Copyright © 2019 Neo4j, Inc.

4.1.3. Grantees
A grantee is a role which has a privilege granted. If you wish to grant privileges to users, grant the appropriate roles to the users in question.

4.1.4. Granting and Denying Privileges
Privileges control the access rights to graph elements using a combined whitelist/blacklist mechanism. It is possible to grant access, deny access, or
both. The user will be able to access a resource if they have a grant (whitelist) and do not have a deny (blacklist) relevant to that resource. If there are
no read privileges provided at all, then the user will be denied access to the entire graph, and this will generate an error. All other combinations of
GRANT and DENY will result in the matching subgraph being visible, which will appear to the user as if they have a smaller database (smaller graph).

4.1.4.1. Fine-Grained Security
The GRANT and DENY commands can provide a fine-grained level of security, allowing the DBA to control access to:

● Nodes identified by their label(s).
● Relationships identified by their relationship type.
● A subset of properties on nodes and relationships.
● A selected list of graphs.

When the DBA wants to limit the access to a selected list, they can specify the list in the GRANT command. Alternatively, an * in the command means
that the grant is applied to all the properties, graphs or nodes. If they wish to restrict access to all but a selected list, they can use the DENY command.

NOTE
In a GRANT or DENY command:

● The property list appears as part of the graph-privilege.
● The graph and node lists appear as part of the entity.

 39 Copyright © 2019 Neo4j, Inc.

4.1.4.2. The GRANT/DENY Commands

The GRANT command allows a DBA to grant a privilege to a role in order to access an entity. The DENY command allows a DBA to deny a privilege to a
role in order to prevent access to an entity. The syntax is:

GRANT graph-privilege ON GRAPH graphname entity TO role
DENY graph-privilege ON GRAPH graphname entity TO role

Where the components are:

● graph-privilege

○ The privilege that is being assigned. graph-privilege can have the following values:
■ TRAVERSE - allows the specified entities to be found.
■ READ (property) - allows the specified properties to be read on the found entities. Note that if the query used to find the

entity requires reading the property, it will not be found. Multiple properties can be specified, comma-separated. property can
be set to * which means all properties.

■ MATCH (property) - this combines both TRAVERSE and READ allowing an entity to be found and the specified properties read.
Multiple properties can be specified, comma-separated.

■ WRITE (*) - in MR2 this privilege can only be assigned to all nodes, relationships and properties in the entire graph (this means
that the entity part of the command must also be ELEMENTS * and cannot be more specific (yet)).

● graphname

○ The name of the graph or graphs to associate the privilege with. In Neo4j 4.0, each database has exactly one graph, and the graph name
is the same as the database name. Note that if you delete a database and create a new one with the same name, the new database will
not have any of the privileges specifically assigned to the original (deleted) graph.

○ Multiple graph names can be specified, comma-separated.
○ graphname can be * which means all graphs. Graphs associated to databases created after this command has been issued will be given

these privileges.
● entity

○ The graph elements that this privilege applies to. entity can have the following values:
■ NODES label , where label specifies which node label(s) that are included in this privilege.
■ RELATIONSHIPS type , where type specifies which relationship type(s) that are included in this privilege.

 40 Copyright © 2019 Neo4j, Inc.

■ ELEMENTS {label | type} , where label and type are the same as defined above.
○ Multiple labels and relationship types can be specified, comma-separated.
○ The label or type can be set to * which means all labels or all relationship types.

● role

○ The role or roles to associate the privilege with.

NOTE
It is important to note that using DENY does NOT erase a GRANT command; they both exist. The only way to erase a privilege is with
REVOKE .

GRANT/DENY syntax and options in MR2

 41 Copyright © 2019 Neo4j, Inc.

4.1.4.3. GRANT Examples

The following examples assume that a DBA want to grant access on entities to the role my_role . (See section below on how to create a role.)

NOTE As with all the other Cypher administrative commands, both GRANT and DENY must be executed in the system database.

TRAVERSE all nodes in all graphs:

neo4j@system> GRANT TRAVERSE ON GRAPHS * NODES * TO my_role;

MATCH all relationships in all graphs:

neo4j@system> GRANT MATCH (*) ON GRAPHS * RELATIONSHIPS * TO my_role;

MATCH all nodes in graph neo4j :

neo4j@system> GRANT MATCH (*) ON GRAPH neo4j NODES * TO my_role;

MATCH nodes with labels labA and labB in graph neo4j :

neo4j@system> GRANT MATCH (*) ON GRAPH neo4j NODES labA, labB TO my_role;

MATCH properties p0 and p1 in nodes with label labA and properties p0 , p1 , p2 and p3 in relationships with labB :

neo4j@system> GRANT MATCH (p0,p1) ON GRAPHS * NODES labA TO my_role;
neo4j@system> GRANT MATCH (p0,p1,p2,p3) ON GRAPHS * RELATIONSHIPS labB TO my_role;

The DENY command can be used in a similar fashion.

 42 Copyright © 2019 Neo4j, Inc.

4.2 Security Model in Neo4j 4.0 vs. Other DBMSs
In many DBMSs, and more specifically with Relational DBMSs, a security layer is used to grant or deny access to a known entity. The layer provides a
straightforward control over the access, where a granted access ends with a successful result returned to the user or to the application, and a denied
access ends with an error. Furthermore, the layer is applied to the query by analyzing which objects are involved and which access the user is allowed
against these objects.

Evaluating fine-grained security rules in relational DBMSs

A graph model and the nature of connected data requires a different approach to security. In simple terms, in Neo4j 4.0 the security layer is applied
during the execution of the query and the behavior differs between writes (change or deletion of an existing object, or creation of a new object) and
reads. With writes, a user has its access granted or denied, depending on the privilege, and the consequences are query success or error: this is similar
to the grant or denied access of the security model of relational DBMSs.

With reads however, the access is evaluated for all the objects involved in the execution of the query and the results differ depending on which object
can be accessed - or in other terms, the result is filtered depending on the privileges of the user. Instead of an error, a restricted user will see a subset
of the graph. The only situation in which an error occurs during read-only queries is when the user has no read privileges at all.

 43 Copyright © 2019 Neo4j, Inc.

Evaluating fine-grained security rules in Neo4j

4.3. User Management

Neo4j 4.0 MR2 provides new administration commands to manage users. In the Enterprise Edition versions of Neo4j 3.1 to 3.5, users were managed
using procedures. Although these procedures still exist, they may be deprecated in the future and it is strongly advised that they must not be used in
this release.

4.3.1. Cypher Commands for User Management
The following Cypher commands are available for managing users:

Command Description Type of user

CREATE USER name SET PASSWORD password
 [[SET PASSWORD] CHANGE [NOT] REQUIRED]

 [SET STATUS {ACTIVE|SUSPENDED}]

Create a new user Admin

DROP USER name Drop (remove) an existing user Admin

 44 Copyright © 2019 Neo4j, Inc.

ALTER USER name SET {
 PASSWORD password [[SET PASSWORD] CHANGE [NOT] REQUIRED]
 [SET STATUS {ACTIVE | SUSPENDED}]

 | PASSWORD CHANGE [NOT] REQUIRED [SET STATUS {ACTIVE |

SUSPENDED}]

 | STATUS {ACTIVE | SUSPENDED}}

Modify the settings for an existing
user

Admin

ALTER CURRENT USER SET PASSWORD FROM original TO password Change the logged in users
password

Normal user

SHOW USERS

List all users Admin

SHOW USER name PRIVILEGES

List the privileges granted to a user Admin

NOTE Like all the other new administration commands, user management commands must be executed in the system database.

4.3.2. Creating a New User
CREATE USER is used to create a new user. The full syntax is:

CREATE USER name SET PASSWORD password [[SET PASSWORD] CHANGE [NOT] REQUIRED]
[SET STATUS {ACTIVE|SUSPENDED}]

Arguments and options for the command are:

● name - The name of the user to create.
● SET PASSWORD password - An initial password needs to be set. It can either be a string enclosed in quotes or a parameter with a string value.
● CHANGE REQUIRED or CHANGE NOT REQUIRED - By default, the initial password must be modified on first login (CHANGE REQUIRED). With

CHANGE NOT REQUIRED , the user can keep the initial password.

 45 Copyright © 2019 Neo4j, Inc.

● SET STATUS ACTIVE or SET STATUS SUSPENDED - By default, the user is active, i.e. the user can immediately login. The DBA may suspend
the user, preventing the login.

4.3.2.1. CREATE USER Example
This command creates the user joe with the password soap , and does not require a password change once they login:

neo4j@system> CREATE USER joe SET PASSWORD 'soap' CHANGE NOT REQUIRED;

4.3.3. Removing an Existing User
DROP USER is used to remove an existing user. The syntax is:

DROP USER name

4.3.4. Modifying the Settings of an Existing User
ALTER USER is used to modify an existing user. The full syntax is:

ALTER USER name SET {
 PASSWORD password [[SET PASSWORD] CHANGE [NOT] REQUIRED] [SET STATUS {ACTIVE | SUSPENDED}]
 | PASSWORD CHANGE [NOT] REQUIRED [SET STATUS {ACTIVE | SUSPENDED}]

 | STATUS {ACTIVE | SUSPENDED}}

At least one of the options needs to be set for this command and if an option is not set the users current value will be kept.

Arguments and options for the command are:

● name - The name of the user to modify
● SET PASSWORD password - A new password for the user. It can either be a string enclosed in quotes or a parameter with a string value.
● CHANGE REQUIRED or CHANGE NOT REQUIRED - This updates the flag for if the users password needs to be modified on next login (CHANGE

REQUIRED) or if it can be kept (CHANGE NOT REQUIRED).

 46 Copyright © 2019 Neo4j, Inc.

● SET STATUS ACTIVE or SET STATUS SUSPENDED - This updates the user’s status, i.e. active, meaning that the user can login, or suspended,
preventing the login.

4.3.4.1. ALTER USER Examples
This command changes the password for the user joe to supersecret , but if joe was suspended or needed to change his password on the next
login that is still true:

neo4j@system> ALTER USER joe SET PASSWORD 'supersecret';

This command changes the password for the user joe and does not require him to change his password on the next login, however if he was
suspended that is still true:

neo4j@system> ALTER USER joe SET PASSWORD 'supersecret' CHANGE NOT REQUIRED;

This command just updates that the user joe doesn’t need to change his password on the next login, without changing his current password and if he
was suspended that is still true:

neo4j@system> ALTER USER joe SET PASSWORD CHANGE NOT REQUIRED;

This command suspends the user joe , but he keeps his old password, and if he was previously required to change his password on the next login,
that is still true:

neo4j@system> ALTER USER joe SET STATUS SUSPENDED;

This command activates the user joe , gives him a new password and makes sure he needs to change password on next login:

neo4j@system> ALTER USER joe SET PASSWORD 'changeme' CHANGE REQUIRED SET STATUS ACTIVE;

 47 Copyright © 2019 Neo4j, Inc.

4.3.5. Listing All Users
SHOW USERS is used to provide a list of all users. The syntax is:

SHOW USERS

For example:

neo4j@system> SHOW USERS;
+---+

| user | roles | passwordChangeRequired | suspended |

+---+

| "neo4j" | ["admin"] | FALSE | FALSE |

| "joe" | [] | FALSE | FALSE |

| "normal" | ["user"] | FALSE | FALSE |

| "limited" | ["restricted"] | FALSE | FALSE |

+---+

The command returns the following information:

● user - The username.
● roles - The roles assigned to the user.
● passwordChangeRequired - True if the user requires a password change on next login, otherwise false.
● suspended - True if the user is suspended, otherwise false.

4.3.6. Listing Privileges for a User
SHOW USER PRIVILEGES is used to provide a list of privileges for a given user. The syntax is explained in detail in 4.3.9. Listing privileges:

For example:

 48 Copyright © 2019 Neo4j, Inc.

neo4j@system> SHOW USER normal PRIVILEGES;
+---+

| grant | action | resource | graph | segment | role | user |

+---+

| "DENIED" | "read" | "property(ssn)" | "*" | "NODE(*)" | "user" | "normal" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "user" | "normal" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "user" | "normal" |

| "DENIED" | "find" | "graph" | "*" | "NODE(Category)" | "user" | "normal" |

| "DENIED" | "read" | "property(ssn)" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

+---+

4.3.7. Changing your own password

ALTER CURRENT USER is used to change the current user's own password. This command can be run by any user. The syntax is:

ALTER CURRENT USER SET PASSWORD FROM oldpw TO newpw

Arguments and options for the command are:

● oldpw - The current password for the user.
● newpw - The new password.

 49 Copyright © 2019 Neo4j, Inc.

For example:

userx@system> ALTER CURRENT USER SET PASSWORD FROM 'myoldpw' TO 'mynewpw';

The command above is the equivalent to an admin executing the following command:

neo4j@system> ALTER USER userx SET PASSWORD 'mynewpw' CHANGE NOT REQUIRED;

NOTE

In MR2 it is still possible to change your own password when connected to any database using the procedure CALL
dbms.security.changePassword('secretpassword'), but this will be removed before the final release of Neo4j 4.0. Two key
differences between the 3.x and the 4.x way of setting a new password:

● In 4.0 this action must be performed on the system database.
● In 4.0 it is necessary to know and use the original password when setting the new one.

4.4. Role Management

Roles are a named collection of privileges. In Neo4j 4.0 MR2, roles are used to connect privileges to users, because:
● privileges can only be granted or denied to roles.
● roles are granted to users.

 50 Copyright © 2019 Neo4j, Inc.

4.4.1. Built-in Roles
Neo4j 3.X provided built-in roles. Such roles are also available in Neo4j 4.0. In Neo4j 4.0 MR2, built-in roles are created the first time the database is
started as part of the initialization of the system database. But from that point on they are the same as custom roles and can be modified and even
dropped.

The built-in roles are:

● reader - A typical read-only role:
GRANT MATCH (*) ON GRAPHS * ELEMENTS * TO reader

● editor - A regular user with read/write access to the database:
GRANT MATCH (*) ON GRAPHS * ELEMENTS * TO editor

GRANT WRITE (*) ON GRAPHS * ELEMENTS * TO editor
● publisher - A user who can also create or remove indexes and other tokens:

GRANT MATCH (*) ON GRAPHS * ELEMENTS * TO publisher

GRANT WRITE (*) ON GRAPHS * ELEMENTS * TO publisher

GRANT INDEX MANAGEMENT ON DATABASES * TO publisher // Command not available in Neo4j 4.0 MR2

● architect - A user who can manage indexes and constraints:
GRANT MATCH (*) ON GRAPHS * ELEMENTS * TO architect

GRANT WRITE (*) ON GRAPHS * ELEMENTS * TO architect

GRANT INDEX MANAGEMENT ON DATABASES * TO architect // Command not available in Neo4j 4.0 MR2

GRANT CONSTRAINT MANAGEMENT ON DATABASES * TO architect // Command not available in Neo4j 4.0 MR2

GRANT NAME MANAGEMENT ON DATABASES * TO architect // Command not available in Neo4j 4.0 MR2
● admin - A superuser, database administrator:

GRANT MATCH (*) ON GRAPHS * ELEMENTS * TO admin

GRANT WRITE (*) ON GRAPHS * ELEMENTS * TO admin

GRANT INDEX MANAGEMENT ON DATABASES * TO admin // Command not available in Neo4j 4.0 MR2

GRANT CONSTRAINT MANAGEMENT ON DATABASES * TO admin // Command not available in Neo4j 4.0 MR2

GRANT NAME MANAGEMENT ON DATABASES * TO admin // Command not available in Neo4j 4.0 MR2

GRANT ALL DATABASE PRIVILEGES ON DATABASES * TO admin // Command not available in Neo4j 4.0 MR2

GRANT ALL DBMS PRIVILEGES ON DBMS TO admin // Command not available in Neo4j 4.0 MR2

 51 Copyright © 2019 Neo4j, Inc.

You can review the privileges for the built-in roles by running the SHOW PRIVILEGES command. One of the examples under 4.3.9. Listing privileges lists
the output.

4.4.2. Cypher Commands for Role Management
The following Cypher commands are available for managing roles:

Command Description

CREATE ROLE name [AS COPY OF name] Create a new role

DROP ROLE name Drop (remove) an existing role

SHOW [ALL|POPULATED] ROLES [WITH USERS] List roles

SHOW ROLE name PRIVILEGES List the privileges granted to a role

GRANT ROLE name TO user Assign a role to a user

REVOKE ROLE name FROM user Remove a role from a user

NOTE Like all the other new administration commands, role management commands must be executed in the system database.

4.4.3. Creating a New Role
CREATE ROLE is used to create a new role. The full syntax is:

CREATE ROLE name [AS COPY OF name]

Arguments and options for the command are:

● name - The name of the role to create.

 52 Copyright © 2019 Neo4j, Inc.

● AS COPY OF name - The new role is created as a copy of an existing role, including all associated privileges.

NOTE In the previous Milestone Release the only way to create custom roles with write privileges was to copy a built-in role and edit it.
However, in Neo4j 4.0 MR2 it is now possible to directly GRANT global write permissions to custom roles.

4.4.4. Removing an Existing Role
DROP ROLE is used to remove an existing role. The syntax is:

DROP ROLE name

4.4.5. Modifying Existing Roles
Roles are used to define a particular security behaviour. This is done by associating a collection of privileges to the role using the GRANT , DENY and
REVOKE commands.

In Neo4j 4.0 MR2, privileges granted or denied to a role can be revoked using a command similar to the original GRANT or DENY command, but
prefixed with the term REVOKE . However, it is important to remember that GRANT and DENY commands often map to several underlying privileges,
and if you perform multiple overlapping GRANT or DENY commands when revoking one of them, you will also remove the intersection with the others.
In particular, if you REVOKE without specifying GRANT or DENY you will remove all privileges (both granted and denied) that match the REVOKE
specification.

For example, consider making the single role special and a single GRANT MATCH .

neo4j@system> CREATE ROLE detective;
0 rows available after 48 ms, consumed after another 37 ms

neo4j@system> GRANT MATCH (foo,bar) ON GRAPH neo4j ELEMENTS * TO detective;
0 rows available after 326 ms, consumed after another 2 ms

 53 Copyright © 2019 Neo4j, Inc.

neo4j@system> SHOW ROLE detective PRIVILEGES;
+--+

| grant | action | resource | graph | segment | role |

+--+

| "GRANTED" | "read" | "property(bar)" | "neo4j" | "NODE(*)" | "detective" |

| "GRANTED" | "read" | "property(foo)" | "neo4j" | "NODE(*)" | "detective" |

| "GRANTED" | "find" | "graph" | "neo4j" | "NODE(*)" | "detective" |

| "GRANTED" | "read" | "property(bar)" | "neo4j" | "RELATIONSHIP(*)" | "detective" |

| "GRANTED" | "find" | "graph" | "neo4j" | "RELATIONSHIP(*)" | "detective" |

| "GRANTED" | "read" | "property(foo)" | "neo4j" | "RELATIONSHIP(*)" | "detective" |

+--+

Note how the single GRANT command resulted in six underlying privileges. This is because MATCH is syntactic sugar for a combination of TRAVERSE
(find) and READ (read). In addition we specified ‘ELEMENTS * ’ which means both ‘NODES * ’ and ‘RELATIONSHIPS * ’. Further, the READ command
referred to two properties, each of which gets a separate privilege.

This also means it is possible to revoke any subset of the above set of privileges with an appropriate command:

neo4j@system> REVOKE TRAVERSE ON GRAPH neo4j ELEMENTS * FROM detective;
0 rows available after 160 ms, consumed after another 1 ms

neo4j@system> SHOW ROLE detective PRIVILEGES;
+--+

| grant | action | resource | graph | segment | role |

+--+

| "GRANTED" | "read" | "property(bar)" | "neo4j" | "NODE(*)" | "detective" |

| "GRANTED" | "read" | "property(foo)" | "neo4j" | "NODE(*)" | "detective" |

| "GRANTED" | "read" | "property(bar)" | "neo4j" | "RELATIONSHIP(*)" | "detective" |

 54 Copyright © 2019 Neo4j, Inc.

| "GRANTED" | "read" | "property(foo)" | "neo4j" | "RELATIONSHIP(*)" | "detective" |

+--+

In this example we revoked only the TRAVERSE (find) privilege, but still specified ‘ELEMENTS * ’ so two underlying privileges were removed (for the
nodes and relationships).

4.4.6. Listing Roles
SHOW ROLES is used to provide a list of roles. The syntax is:

SHOW [ALL|POPULATED] ROLES [WITH USERS]

Arguments and options for the command are:
● ALL - Similar to SHOW ROLES , the option provides a list of all roles.
● POPULATED - List of roles that have been granted to at least one user.
● WITH USERS - Adds an additional column for the users that the role is granted to, containing null if the role has no users. Will provide one row for

each user the role is granted to.

For example:

neo4j@system> SHOW ROLES;
+--------------------------+

| role | isBuiltIn |

+--------------------------+

| "admin" | TRUE |

| "publisher" | TRUE |

| "editor" | TRUE |

| "reader" | TRUE |

| "architect" | TRUE |

| "my_role" | FALSE |

| "detective" | FALSE |

 55 Copyright © 2019 Neo4j, Inc.

| "user" | FALSE |

| "restricted" | FALSE |

+--------------------------+

9 rows available after 1 ms, consumed after another 1 ms

neo4j@system> SHOW POPULATED ROLES;
+--------------------------+

| role | isBuiltIn |

+--------------------------+

| "admin" | TRUE |

| "user" | FALSE |

| "restricted" | FALSE |

+--------------------------+

3 rows available after 18 ms, consumed after another 1 ms

neo4j@system> SHOW POPULATED ROLES WITH USERS;
+--------------------------------------+

| role | isBuiltIn | member |

+--------------------------------------+

| "admin" | TRUE | "neo4j" |

| "user" | FALSE | "normal" |

| "restricted" | FALSE | "limited" |

+--------------------------------------+

3 rows available after 22 ms, consumed after another 1 ms

neo4j@system> SHOW ALL ROLES WITH USERS;
+--------------------------------------+

| role | isBuiltIn | member |

+--------------------------------------+

| "admin" | TRUE | "neo4j" |

| "publisher" | TRUE | NULL |

| "editor" | TRUE | NULL |

| "reader" | TRUE | NULL |

| "architect" | TRUE | NULL |

| "my_role" | FALSE | NULL |

 56 Copyright © 2019 Neo4j, Inc.

| "detective" | FALSE | NULL |

| "user" | FALSE | "normal" |

| "restricted" | FALSE | "limited" |

+--------------------------------------+

9 rows available after 26 ms, consumed after another 2 ms

neo4j@system

The command returns the following information:

● role - The name of the role.
● is_built_in - True for the original built-in roles and false for any custom roles.
● member - Shown only with the WITH USER option and is the name of the user to whom the role has been granted. If a role is granted to

multiple users, then the output will contain one row for each user the role is granted to.

4.4.7. Granting Roles to Users
The GRANT command is used to grant a role to a user. The syntax is:

GRANT ROLE name[,...] TO user[,...]

The command can be used to assign multiple roles to multiple users.

4.4.8. Revoking Roles from Users
The REVOKE command is used to revoke one or more roles from one or more users. The syntax is:

REVOKE ROLE name[,...] FROM user[,...]

4.4.9. Listing privileges
The SHOW PRIVILEGES command provides a list of privileges. The syntax is:

 57 Copyright © 2019 Neo4j, Inc.

SHOW [ALL

 | USER [username]

 | ROLE [rolename]] PRIVILEGES]

Arguments and options for the command are:
● username - The name of the user selected to list the privileges for.
● rolename - The name of the role selected to list the privileges for.

Specifically, there are three ways of running the command:

Command Description

SHOW PRIVILEGES Show all privileges currently defined for all roles

SHOW ROLE rolename PRIVILEGES Show all privileges for a specific role

SHOW USER username PRIVILEGES Show all privileges for a specific user and from which roles they got those privileges

Running the SHOW PRIVILEGES command before making any edits to the security model shows the privileges available for the built-in roles:

neo4j@system> SHOW PRIVILEGES;
+--+

| grant | action | resource | graph | segment | role |

+--+

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "write" | "token" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "write" | "schema" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "write" | "system" | "*" | "NODE(*)" | "admin" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "admin" |

 58 Copyright © 2019 Neo4j, Inc.

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "admin" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "admin" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "architect" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "architect" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "architect" |

| "GRANTED" | "write" | "token" | "*" | "NODE(*)" | "architect" |

| "GRANTED" | "write" | "schema" | "*" | "NODE(*)" | "architect" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "architect" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "architect" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "architect" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "editor" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "editor" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "editor" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "publisher" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "publisher" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "publisher" |

| "GRANTED" | "write" | "token" | "*" | "NODE(*)" | "publisher" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "publisher" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "publisher" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "publisher" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "reader" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "reader" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "reader" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "reader" |

+--+

The command returns the following information:

● grant - The privilege access, i.e. if the privilege has been GRANTED or DENIED .
● action - The underlying action that is enabled by the grant. Possible values are:

○ find - the ability to find nodes by label or relationships by type (see the ‘segment’ column).
○ read - the ability to read the properties of graph elements.

 59 Copyright © 2019 Neo4j, Inc.

○ write - coarse-grained write access to the entire graph.
● resource - The resource that is granted access to. Possible values are:

○ graph - coarse-grained access to the graph. There are two specializations of this resource applied to sub-graphs:
■ all_properties - when permission is granted to read all properties of a sub-graph.
■ property - when permission is granted to read a specific property of a sub-graph.

○ token - coarse-grained write access to tokens (ability to create new labels, relationship types or property names).
○ schema - coarse-grained write access to creating indexes and constraints.
○ system - coarse-grained write access to administrative functions (both multiple database management commands and user, role, and

privilege management commands).
● graph - The graph, or list of graphs, that the privilege applies to.
● segment - When describing the scope to which the privilege is granted, it is possible to limit the scope to nodes of a particular label,

relationships of a particular type, or * if there is no limitation.
● role - The role to which this privilege was granted, or the role via which the user is granted the privilege.
● user - When using the ‘SHOW USER’ version of the command, this column lists the user.

To see the privileges available to the built-in role editor which can perform all read and write operations on the graph:

neo4j@system> SHOW ROLE editor PRIVILEGES;
+--+

| grant | action | resource | graph | segment | role |

+--+

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "editor" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "editor" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "editor" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "editor" |

+--+

 60 Copyright © 2019 Neo4j, Inc.

To see the privileges available to the built-in user neo4j :

neo4j@system> SHOW USER neo4j PRIVILEGES;
+--+

| grant | action | resource | graph | segment | role | user |

+--+

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "write" | "all_properties" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "write" | "token" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "write" | "schema" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "write" | "system" | "*" | "NODE(*)" | "admin" | "neo4j" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "admin" | "neo4j" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "admin" | "neo4j" |

| "GRANTED" | "write" | "all_properties" | "*" | "RELATIONSHIP(*)" | "admin" | "neo4j" |

+--+

 61 Copyright © 2019 Neo4j, Inc.

4.5. Security Walk-through: Label-Based Security
This example can help in understanding the capabilities of the security features in Neo4j 4.0 MR2.

4.5.1. The Graph
Suppose we have a simple graph with these nodes, associated with four labels; BPSS , SC , CTC and DV :

CREATE (:BPSS {p0:1, p1: 11, p2: 21});

CREATE (:BPSS {p0:2, p1: 12, p2: 22});

CREATE (:BPSS {p0:3, p1: 13, p2: 23});

CREATE (:BPSS {p0:4, p1: 14, p2: 24});

MATCH (n1:BPSS {p0:1}), (n4:BPSS {p0:4}) MERGE (n1)-[:R]->(n4);

MATCH (n2:BPSS {p0:2}), (n4:BPSS {p0:4}) MERGE (n2)-[:R]->(n4);

MATCH (n3:BPSS {p0:3}), (n4:BPSS {p0:4}) MERGE (n3)-[:R]->(n4);

CREATE (:SC {p0:5, p1: 15, p2: 25});

CREATE (:SC {p0:6, p1: 16, p2: 26});

MATCH (n5:SC {p0:5}), (n4:BPSS {p0:4}) MERGE (n5)-[:R]->(n4);

MATCH (n6:SC {p0:6}), (n4:BPSS {p0:4}) MERGE (n6)-[:R]->(n4);

CREATE (:CTC {p0:7, p1: 17, p2: 27})-[:R]->(:CTC {p0:8, p1: 18, p2:28});

MATCH (n1:BPSS {p0:1}), (n8:CTC {p0:8}) MERGE (n1)-[:R]->(n8);

CREATE (:DV {p0:9, p1:19, p2:29});

CREATE (:DV {p0:10, p1:20, p2:30});

CREATE (:DV {p0:11, p1:21, p2:31});

CREATE (:DV {p0:12, p1:22, p2:32});

MATCH (n9:DV {p0:9}), (n8:CTC {p0:8}) MERGE (n9)-[:R]->(n8);

MATCH (n10:DV {p0:10}), (n8:CTC {p0:8}) MERGE (n10)-[:R]->(n8);

MATCH (n11:DV {p0:11}), (n8:CTC {p0:8}) MERGE (n11)-[:R]->(n8);

MATCH (n12:DV {p0:12}), (n8:CTC {p0:8}) MERGE (n12)-[:R]->(n8);

MATCH (n10:DV {p0:10}), (n4:BPSS {p0:4}) MERGE (n10)-[:R]->(n4);

 62 Copyright © 2019 Neo4j, Inc.

4.5.2. Users and Roles
In our example, we want to create four security levels, and each level is associated with a role.

This is the list of levels, in order of importance:

● Baseline Personnel Security Standard - associated with node label BPSS .
● Security Check - associated with node label SC .
● Counter-Terrorism Check - associated with node label CTC .
● Developed Vetting - associated with node label DV .

These are the commands we can use to create the roles and to GRANT access to the nodes with the given labels:

CREATE ROLE Baseline_Personnel_Security_Standard;

CREATE ROLE Security_Check;

CREATE ROLE Counter_Terrorism_Check;

CREATE ROLE Developed_Vetting;

GRANT TRAVERSE ON GRAPH * ELEMENTS * TO Baseline_Personnel_Security_Standard;

GRANT TRAVERSE ON GRAPH * ELEMENTS * TO Security_Check;

GRANT TRAVERSE ON GRAPH * ELEMENTS * TO Counter_Terrorism_Check;

GRANT TRAVERSE ON GRAPH * ELEMENTS * TO Developed_Vetting;

GRANT READ (*) ON GRAPH * NODES BPSS TO Baseline_Personnel_Security_Standard;

GRANT READ (*) ON GRAPH * NODES SC TO Security_Check;

GRANT READ (*) ON GRAPH * NODES CTC TO Counter_Terrorism_Check;

GRANT READ (*) ON GRAPH * NODES DV TO Developed_Vetting;

Note that the TRAVERSE and READ privileges are referring to different elements. In particular we grant TRAVERSE to all ELEMENTS (both NODES and
RELATIONSHIPS) so that the entire graph can be traversed. However, we only GRANT READ to the NODES since we do not need the users to see
properties of the RELATIONSHIPS .

 63 Copyright © 2019 Neo4j, Inc.

We also create users with different levels of security clearance:
● User jake has security clearance associated to the role Baseline_Personnel_Security_Standard .
● User philip has security clearance associated to the roles Baseline_Personnel_Security_Standard , Security_Check and

Counter_Terrorism_Check .
● User emil has maximum security clearance associated to all the roles, i.e. Baseline_Personnel_Security_Standard , Security_Check,

Counter_Terrorism_Check and Developed_Vetting .

These are the commands we can use to create the users and grant the roles:

CREATE USER jake SET PASSWORD 'jake' CHANGE NOT REQUIRED SET STATUS ACTIVE;

CREATE USER philip SET PASSWORD 'philip' CHANGE NOT REQUIRED SET STATUS ACTIVE;

CREATE USER emil SET PASSWORD 'emil' CHANGE NOT REQUIRED SET STATUS ACTIVE;

GRANT ROLE Baseline_Personnel_Security_Standard TO jake, philip, emil;

GRANT ROLE Security_Check TO philip, emil;

GRANT ROLE Counter_Terrorism_Check TO philip, emil;

GRANT ROLE Developed_Vetting TO emil;

 64 Copyright © 2019 Neo4j, Inc.

Putting all together, the three users will have access to sub-graphs, that can be visualized in this picture:

4.5.3. Data Return from MATCH queries
We can now experiment a simple query:

MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;

This query will return different results depending on the user (and their related security clearance and role) who execute it.

 65 Copyright © 2019 Neo4j, Inc.

User emil , who has full access to the graph, will see these results:

emil@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 5, p1: 15, p2: 25}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 6, p1: 16, p2: 26}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:CTC {p0: 7, p1: 17, p2: 27}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 9, p1: 19, p2: 29}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 10, p1: 20, p2: 30}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:DV {p0: 10, p1: 20, p2: 30}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 11, p1: 21, p2: 31}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 12, p1: 22, p2: 32}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

+--+

User philip does not have access to nodes with label DV , therefore the result will be:

philip@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 5, p1: 15, p2: 25}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 6, p1: 16, p2: 26}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:CTC {p0: 7, p1: 17, p2: 27}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

 66 Copyright © 2019 Neo4j, Inc.

| (:DV) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

+--+

Finally, user jake has a more restrictive access (only to nodes with label BPSS), therefore the result will be:

jake@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:CTC) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:DV) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:CTC) | [:R] | (:CTC) |

| (:DV) | [:R] | (:CTC) |

| (:DV) | [:R] | (:CTC) |

| (:DV) | [:R] | (:CTC) |

| (:DV) | [:R] | (:CTC) |

+--+

4.5.4. Removing the TRAVERSE Privilege
Continuing with the example, we now suppose that we intend to remove the TRAVERSE privilege on all the nodes, i.e. TRAVERSE is only valid for the
same nodes that are accessible with the MATCH privilege. We can REVOKE all the individual privileges, but it is easier to DROP the roles and recreate
the privileges, so we’ll do that here.

DROP ROLE Baseline_Personnel_Security_Standard;

 67 Copyright © 2019 Neo4j, Inc.

DROP ROLE Security_Check;

DROP ROLE Counter_Terrorism_Check;

DROP ROLE Developed_Vetting;

The commands to set the privileges are:

CREATE ROLE Baseline_Personnel_Security_Standard;

CREATE ROLE Security_Check;

CREATE ROLE Counter_Terrorism_Check;

CREATE ROLE Developed_Vetting;

// Since the GRANT MATCH will only cover NODES, we need to separately grant RELATIONSHIPS

GRANT TRAVERSE ON GRAPH * RELATIONSHIPS * TO Baseline_Personnel_Security_Standard;

GRANT TRAVERSE ON GRAPH * RELATIONSHIPS * TO Security_Check;

GRANT TRAVERSE ON GRAPH * RELATIONSHIPS * TO Counter_Terrorism_Check;

GRANT TRAVERSE ON GRAPH * RELATIONSHIPS * TO Developed_Vetting;

// The GRANT MATCH … NODES will provide TRAVERSE for those NODES as well

GRANT MATCH (*) ON GRAPH * NODES BPSS TO Baseline_Personnel_Security_Standard;

GRANT MATCH (*) ON GRAPH * NODES SC TO Security_Check;

GRANT MATCH (*) ON GRAPH * NODES CTC TO Counter_Terrorism_Check;

GRANT MATCH (*) ON GRAPH * NODES DV TO Developed_Vetting;

// Now assign these roles to the users

GRANT ROLE Baseline_Personnel_Security_Standard TO jake, philip, emil;

GRANT ROLE Security_Check TO philip, emil;

GRANT ROLE Counter_Terrorism_Check TO philip, emil;

GRANT ROLE Developed_Vetting TO emil;

 68 Copyright © 2019 Neo4j, Inc.

The same MATCH query executed with the new security model provides different results:

emil@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 5, p1: 15, p2: 25}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 6, p1: 16, p2: 26}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:CTC {p0: 7, p1: 17, p2: 27}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 9, p1: 19, p2: 29}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 10, p1: 20, p2: 30}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:DV {p0: 10, p1: 20, p2: 30}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 11, p1: 21, p2: 31}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:DV {p0: 12, p1: 22, p2: 32}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

+--+

philip@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 5, p1: 15, p2: 25}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:SC {p0: 6, p1: 16, p2: 26}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:CTC {p0: 7, p1: 17, p2: 27}) | [:R] | (:CTC {p0: 8, p1: 18, p2: 28}) |

+--+

jake@neo4j> MATCH (i)-[j]->(k) RETURN i,j,k ORDER BY i.p0, j.p0, j.p1, k.p0;
+--+

| i | j | k |

+--+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 2, p1: 12, p2: 22}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) | [:R] | (:BPSS {p0: 4, p1: 14, p2: 24}) |

+--+

 69 Copyright © 2019 Neo4j, Inc.

In the previous example, all users retrieved the same number rows, while in this new example, users jake and philip retrieve fewer rows.

4.5.5. Another Example with TRAVERSE
In this example, we illustrate the impact of the TRAVERSE privilege in queries with a simpler data model. Users, roles and privileges are intact from the
previous example, but the data is recreated as follows:

MATCH (n) DETACH DELETE n;

CREATE (:BPSS {p0:1, p1: 11, p2: 21})-[:R]->(:DV {p0: 2, p1: 12, p2:

22})-[:R]->(:BPSS {p0: 3, p1: 13, p2: 23});

Without TRAVERSE access to all nodes, user jake would get no rows in his results:

GRANT MATCH (*) ON GRAPH * NODES BPSS TO Baseline_Personnel_Security_Standard;

jake@neo4j> MATCH (a)-[b]->(c)-[d]->(e) RETURN a,b,c,d,e;
+-------------------+

| a | b | c | d | e |

+-------------------+

+-------------------+

A query that does not include the traversal of a node with higher security clearance would return values:

jake@neo4j> MATCH (n) RETURN n ORDER BY n.p0;
+---------------------------------+

| n |

+---------------------------------+

| (:BPSS {p0: 1, p1: 11, p2: 21}) |

| (:BPSS {p0: 3, p1: 13, p2: 23}) |

+---------------------------------+

 70 Copyright © 2019 Neo4j, Inc.

With the TRAVERSE access to all nodes, user jake would see these results:

GRANT TRAVERSE ON GRAPH * NODES * TO Baseline_Personnel_Security_Standard;

GRANT MATCH (*) ON GRAPH * NODES BPSS TO Baseline_Personnel_Security_Standard;

jake@neo4j> MATCH (a)-[b]->(c)-[d]->(e) RETURN a,b,c,d,e;
+---+

| a | b | c | d | e |

+---+

| (:BPSS {p0: 1, p1: 11, p2: 21}) | [:R] | (:DV) | [:R] | (:BPSS {p0: 3, p1: 13, p2: 23}) |

+---+

CAUTION!
Denying a TRAVERSE access may be necessary for some use cases, but it may significantly restrict the number of rows returned by
MATCH queries, therefore it should be used with caution.

4.6. Security Walk-through: Combining GRANT and DENY
This example can help in understanding the new DENY capability introduced to the security features in Neo4j 4.0 MR2.

4.6.1. The Graph
Suppose we have a simple graph of a social network, with people that make posts, and comments on posts, and all three types can be categorized for
auditing purposes. We would like normal users to be able to see the people, posts and comments, but not the categories. And restricted users to also
be unable to see the comments.

 71 Copyright © 2019 Neo4j, Inc.

// Delete current model

MATCH (n) DETACH DELETE n;

// Create Person nodes

UNWIND range(0, 10) AS index

WITH index, toInteger(rand() * 10) AS cat, toInteger(rand() * 1000000) + 987654 AS ssn

CREATE(user:Person {name:'user_'+index, ssn:ssn})

MERGE (category:Category {name:'People category '+cat})

MERGE (user)-[:IS_A]->(category)

RETURN user.name, user.ssn, category.name;

// Create Post nodes

MATCH (user:Person)

WITH user, ['A','B','C'] AS titles

UNWIND range(0, size(titles) - 1) AS pi

WITH user, titles, pi, titles[pi] AS title, toInteger(rand() * 10) AS rnd, toInteger(rand() * 10) AS

cat

CREATE (post:Post {title:'My post ' + title, content: 'Some content about ' + title})

 72 Copyright © 2019 Neo4j, Inc.

CREATE (user)-[posted:POSTED {created_at:date({year:2019, month:7, day:1 + rnd + pi})}]->(post)

MERGE (category:Category {name:'Post category ' + cat})

MERGE (post)-[:IS_A]->(category)

RETURN user.name, posted.created_at, post.title;

// Create comments to posts

MATCH (user:Person),

 (post:Post)<-[:POSTED]-(poster:Person)

WHERE NOT ((user)-[:POSTED]->(post))

WITH poster, user, post, toInteger(rand() * 10) AS rnd, toInteger(rand() * 10) AS cat

CREATE (user)-[c:COMMENTED {created_at:date({year:2019, month:7, day: rnd + post.created_at.day })

}]->

 (comment:Comment {text: 'I think that "' + poster.name + '" made some very valid points in "' +

post.title + '"'})-[:COMMENT_FOR]->(post)

MERGE (category:Category {name:'Comment category ' + cat })

MERGE (comment)-[:IS_A]->(category)

RETURN user.name, c.created_at, comment.text, post.title;

4.6.2. Users and Roles
In this example, the neo4j user will be the administrator and able to see all, while two new roles will be created for normal users and restricted users:

● Normal users can see all nodes except the ‘Category’ nodes, and are also restricted from seeing the users social security property.
● Restricted users can only see the posts that users create, but not the comments.

Both of these roles can be created using combinations of GRANT and DENY . We will use both GRANT and DENY to setup the normal users, but will use
only whitelisting (GRANT) for the restricted user:

// Remove users and roles

DROP USER normal;

DROP USER limited;

DROP ROLE user;

DROP ROLE restricted;

 73 Copyright © 2019 Neo4j, Inc.

// show current security rules

SHOW PRIVILEGES;

// Create and configure the normal user - see everything except Category and ssn

:param secret => 'secret'

CREATE USER normal SET PASSWORD $secret CHANGE NOT REQUIRED;

CREATE ROLE user;

GRANT ROLE user TO normal;

GRANT TRAVERSE ON GRAPH * ELEMENTS * TO user;

GRANT READ (*) ON GRAPH * ELEMENTS * TO user;

DENY TRAVERSE ON GRAPH * NODES Category TO user;

DENY READ (ssn) ON GRAPH * ELEMENTS * TO user;

SHOW USER normal PRIVILEGES;

// Create and configure a more restricted user - see only Person(name, email) and Post(*)

CREATE USER limited SET PASSWORD $secret CHANGE NOT REQUIRED;

CREATE ROLE restricted;

GRANT ROLE restricted TO limited;

GRANT TRAVERSE ON GRAPH * RELATIONSHIPS * TO restricted;

GRANT TRAVERSE ON GRAPH * NODES Person, Post TO restricted;

GRANT READ (*) ON GRAPH * NODES Post (*) TO restricted;

GRANT READ (name, email) ON GRAPH * NODES Person (*) TO restricted;

SHOW USER limited PRIVILEGES;

4.6.3. Example queries

Let’s investigate the privileges of these two new roles. We can see that the normal user is controlled with a combination of GRANTED and DENIED
privileges:

 74 Copyright © 2019 Neo4j, Inc.

neo4j@system> SHOW USER normal PRIVILEGES;
+---+

| grant | action | resource | graph | segment | role | user |

+---+

| "DENIED" | "read" | "property(ssn)" | "*" | "NODE(*)" | "user" | "normal" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(*)" | "user" | "normal" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(*)" | "user" | "normal" |

| "DENIED" | "find" | "graph" | "*" | "NODE(Category)" | "user" | "normal" |

| "DENIED" | "read" | "property(ssn)" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

| "GRANTED" | "read" | "all_properties" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "user" | "normal" |

+---+

While the limited user is controlled through whitelisting alone:

neo4j@system> SHOW USER limited PRIVILEGES;
+---+

| grant | action | resource | graph | segment | role | user |

+---+

| "GRANTED" | "read" | "property(email)" | "*" | "NODE(Person)" | "restricted" | "limited" |

| "GRANTED" | "read" | "property(name)" | "*" | "NODE(Person)" | "restricted" | "limited" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(Person)" | "restricted" | "limited" |

| "GRANTED" | "read" | "all_properties" | "*" | "NODE(Post)" | "restricted" | "limited" |

| "GRANTED" | "find" | "graph" | "*" | "NODE(Post)" | "restricted" | "limited" |

| "GRANTED" | "find" | "graph" | "*" | "RELATIONSHIP(*)" | "restricted" | "limited" |

+---+

Let’s first investigate the differences in terms of whether the users can see the social security numbers of users:

 75 Copyright © 2019 Neo4j, Inc.

neo4j@neo4j> MATCH (user:Person)
 RETURN count(user), substring(toString(user.ssn),0,2);

+---+

| count(user) | substring(toString(user.ssn),0,2) |

+---+

| 1 | "15" |

| 2 | "19" |

| 4 | "11" |

| 1 | "16" |

| 1 | "14" |

| 1 | "17" |

| 1 | "18" |

+---+

normal@neo4j> MATCH (user:Person)
 RETURN count(user), substring(toString(user.ssn),0,2);

+---+

| count(user) | substring(toString(user.ssn),0,2) |

+---+

| 11 | null |

+---+

limited@neo4j> MATCH (user:Person)
 RETURN count(user), substring(toString(user.ssn),0,2);

+---+

| count(user) | substring(toString(user.ssn),0,2) |

+---+

| 11 | null |

+---+

 76 Copyright © 2019 Neo4j, Inc.

Now let’s see what happens when we try to look at Categories:

neo4j@neo4j> MATCH (user:Person)-[:IS_A]->(category:Category)
 RETURN category.name, count(user);

+-----------------------------------+

| category.name | count(user) |

+-----------------------------------+

| "People category 1" | 3 |

| "People category 7" | 2 |

| "People category 3" | 2 |

| "People category 9" | 1 |

| "People category 2" | 1 |

| "People category 5" | 1 |

| "People category 8" | 1 |

+-----------------------------------+

normal@neo4j> MATCH (user:Person)-[:IS_A]->(category:Category)
 RETURN category.name, count(user);

(no changes, no records)

limited@neo4j> MATCH (user:Person)-[:IS_A]->(category:Category)
 RETURN category.name, count(user);

(no changes, no records)

 77 Copyright © 2019 Neo4j, Inc.

We know that normal and limited users differ in terms of the visibility of comments, so let’s take a look at those:

neo4j@neo4j> MATCH (user:Person)
 RETURN user.name AS poster, size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment));

+--+

| poster | size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment)) |

+--+

| "user_0" | 30 |

| "user_1" | 30 |

| "user_2" | 30 |

| "user_3" | 30 |

| "user_4" | 30 |

| "user_5" | 30 |

| "user_6" | 30 |

| "user_7" | 30 |

| "user_8" | 30 |

| "user_9" | 30 |

| "user_10" | 30 |

+--+

normal@neo4j> MATCH (user:Person)
 RETURN user.name AS poster, size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment));

+--+

| poster | size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment)) |

+--+

| "user_0" | 30 |

| "user_1" | 30 |

| "user_2" | 30 |

| "user_3" | 30 |

| "user_4" | 30 |

 78 Copyright © 2019 Neo4j, Inc.

| "user_5" | 30 |

| "user_6" | 30 |

| "user_7" | 30 |

| "user_8" | 30 |

| "user_9" | 30 |

| "user_10" | 30 |

+--+

limited@neo4j> MATCH (user:Person)
 RETURN user.name AS poster, size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment));

+--+

| poster | size((user)-[:POSTED]->(:Post)<-[:COMMENT_FOR]-(:Comment)) |

+--+

| "user_0" | 0 |

| "user_1" | 0 |

| "user_2" | 0 |

| "user_3" | 0 |

| "user_4" | 0 |

| "user_5" | 0 |

| "user_6" | 0 |

| "user_7" | 0 |

| "user_8" | 0 |

| "user_9" | 0 |

| "user_10" | 0 |

+--+

It is possible to create even more complex scenarios with combinations of GRANT and DENY .

 79 Copyright © 2019 Neo4j, Inc.

5. Drivers and Client/Server Connectivity

NOTE

New drivers are under construction and will be needed to explore the new Bolt server features, but the latest alpha 2.0 drivers enable a
preview.

It is also important to note that the 4.0 release will see the Drivers rename the 2.0 series to 4.0 to align the versioning between the client
and the server before server GA.

5.1. Bolt Server
A new bolt protocol is introduced in this Milestone Release, which enables database selection for running queries on multiple databases, as well as
back pressure with Reactive clients.

To fully use the new features provided by bolt server, 2.0 series drivers are required. Currently the drivers are still under heavy construction and the
API is not fully stable yet. However we can still peek at the future with the latest alpha 2.0 drivers:

● The latest Java alpha driver has the full support of multi-database and back pressure.
● The latest JavaScript alpha driver also provides database selection for managing multiple databases.
● The full support of 4.0 Bolt server features will arrive shortly in all language drivers.

5.2. Database Selection
As managing multiple databases is introduced in this release, before starting a transaction, we need to first select the database where the transaction
would run against.

The following examples show how to run a query against database called foo .

 80 Copyright © 2019 Neo4j, Inc.

5.2.1. Java driver

try(Session session = neo4j.driver().session(t -> t.withDatabase("foo")))

{

 StatementResult result = session.run("RETURN 42");

 assertThat(result.single().get(0).asInt(), equalTo(1));

 assertThat(result.summary.database().name(), equalTo(“foo”));

}

5.2.2. Javascript driver

const neoSession = driver.session({ database: 'foo' })

try {

 const result = await session.run('RETURN 42')

 expect(result.records[0].get(0).toInt()).toBe(1)

 expect(result.summary.database.name).toBe('foo')

} finally {

 neoSession.close()

}

The database name is passed at session creation. All the transactions created in the same session will be executed against the same database
specified on the session creation. If no database is specified, then the default database set in server configuration will be chosen to execute the query.

 81 Copyright © 2019 Neo4j, Inc.

5.3. Back Pressure
Neo4j provides a full stack back pressure, from client to Bolt server, all the way down to Cypher Execution Engine.

To make use of back pressure, a reactive client is required. For the Neo4j 4.0 Milestone 1 release, only the Java driver and SDN-RX will fully deliver this
feature.

The reactive API in the Java driver is located in package org.neo4j.driver.reactive . We’ve exposed the Publisher-Subscriber API specified by
Reactive Streams . You can adopt our driver into a reactive application by using the Reactive Streams libraries, such as observable streams
or project reactor .

The following are two code examples to run queries with observable streams and project reactor :

public Flowable<String> readProductTitlesRxJava()

{

 String query = "MATCH (p:Product) WHERE p.id = $id RETURN p.title";

 Map<String,Object> parameters = Collections.singletonMap("id", 0);

 return Flowable.using(driver::rxSession,

 session -> Flowable.fromPublisher(session.run(query, parameters).records()).map(record ->

record.get(0).asString()),

 RxSession::close);

}

public Flux<String> readProductTitlesReactor()

{

 String query = "MATCH (p:Product) WHERE p.id = $id RETURN p.title";

 Map<String,Object> parameters = Collections.singletonMap("id", 0);

 return Flux.using(driver::rxSession,

 session -> Flux.from(session.run(query, parameters).records()).map(record -> record.get(0

).asString()),

 RxSession::close);

}

 82 Copyright © 2019 Neo4j, Inc.

More examples for using the Java driver Reactive API can be found in the org.neo4j.docs.driver package.

5.4. HTTP Server
In 4.0 we will extend the transactional endpoint to support managing multiple databases.

Meanwhile, we will also be removing a lot of previously deprecated HTTP endpoints such as RESTful endpoints, batch endpoint, JMX endpoint etc.

By adding support to manage multiple databases, the transaction endpoint /db/data/transaction is retained for backward-compatibility
purposes. By sending queries to this endpoint, the query will be executed on the default database configured in server configuration.

To execute a query against a specified database, the new transactional endpoint: is:

db/ databasename/transaction

For example, if we want to execute a query against the database foo , the endpoint would be:

db/foo/transaction

All old endpoints under transaction, such as /transaction/commit , are used in the same way as before against the database specified in path.

NOTE Unmanaged extensions are now supposed to work with DatabaseManagementService instead of GraphDatabaseService after
management for multiple databases are introduced.

 83 Copyright © 2019 Neo4j, Inc.

5.5. Drivers
New drivers are needed to explore the new Bolt Server features.

NOTE Drivers will rename the 2.0 series to 4.0 to align the versioning between the client and the server before server GA.

The following table shows the feature availability in different 2.0 languages drivers:

Feature\Language Java Javascript .NET Python Go

Multiple databases ✔ ✔

Back pressure ✔

Besides new methods added to support 4.0 server features, we also made some updates to the driver public APIs across all language drivers:

● A new connection scheme neo4j is now introduced and preferred over bolt+routing and bolt. With the new neo4j scheme, it can connect the
driver with either a cluster or a single instance.

● Session is split into three sessions, namely Session , AsyncSession , and RxSession .
● v1 is removed in the drivers package name.
● Session parameters are introduced to accept database names, bookmarks and other session configurations on session creation.

Using the Java driver as an example, here are some useful suggestions for when migrating from an earlier driver version to the latest 2.0 pre-release
Java driver:

● The driver classes should be re-imported as they may in a different package.
● The scheme of the initial URI used at driver creation need to be changed to neo4j . If you have used asynchronous sessions in your application,

then the async sessions should be created with driver.asyncSession with the new driver.

The session parameters are now passed at session creation using lambda expressions.

 84 Copyright © 2019 Neo4j, Inc.

5.6. Spring Boot
We provide a new Spring Boot starter for the Neo4j Java driver called neo4j-java-driver-spring-boot-starter.

This starter provides a convenient way to configure all aspects of the Neo4j-Java-Driver from within a Spring Boot application. It provides a single,
managed Spring Bean of type org.neo4j.driver.Driver , configured to your needs.

The starter does not add any additional functionality on top of the driver, but only exposes the driver’s configuration in a Spring friendly way. However,
it configures the driver to use SLF4J logging by default.

As with any other Spring Boot starter, the only thing you have to do is to include the starter module via your dependency management, either with
Maven or with Gradle:

Inclusion of the neo4j-java-driver-spring-boot-starter in a Maven project:

<dependency>

<groupId>org.neo4j.driver</groupId>

<artifactId>neo4j-java-driver-spring-boot-starter</artifactId>

<version>1.0.0-alpha02</version>

</dependency>

Inclusion of the neo4j-java-driver-spring-boot-starter in a Gradle project:

dependencies {

 compile 'org.neo4j.driver:neo4j-java-driver-spring-boot-starter:1.0.0-alpha02'

}

 85 Copyright © 2019 Neo4j, Inc.

https://www.slf4j.org/

The starter brings all the dependency you need for your project, including the official Neo4j Java driver.

If you don’t configure anything, than the starter assumes bolt://localhost:7687 as Neo4j URI, and a server that has disabled authentication.

One possible configuration looks like this:

org.neo4j.driver.uri=bolt://localhost:7687

org.neo4j.driver.authentication.username=neo4j

org.neo4j.driver.authentication.password=secret

If only a single URI is provided, then the configuration tries to use that. Otherwise, it passes all URIs to the Java driver which in turn uses the first one
that is a reachable bolt+routing instance.

The automatic configuration will fail fast if the driver cannot connect to a single Neo4j database or to a routing server.

The starter comes with meta data for your IDE that allows helpful autocomplete:

 86 Copyright © 2019 Neo4j, Inc.

Your Spring context will contain a bean of type org.neo4j.driver.Driver . This is the native instance of the driver and you may use it directly. We
provide examples on GitHub.

5.7. Cypher Shell
Cypher Shell in Neo4j 4.0 MR2 allows you to connect to a specific database by specifying the database name as argument. Optionally, you can select a
different database once you are in Cypher Shell, using the :use command.

5.7.1. Initial Use of Cypher Shell

Change the password for user neo4j :

The following steps illustrate how to start Cypher Shell, and change the default password:

1. First log in with default password neo4j and connect to the system database:

$ bin/cypher-shell -u neo4j -p neo4j -d system
Connected to Neo4j 4.0.0 at bolt://localhost:7687 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@system>

2. Then change from the default password:

neo4j@system> ALTER CURRENT USER SET PASSWORD FROM 'neo4j' TO 'secretpassword';
0 rows available after 107 ms, consumed after another 4 ms

Set 2 properties

neo4j@system>

3. Log out from Cypher Shell and log in again to the database of interest using the new password:

 87 Copyright © 2019 Neo4j, Inc.

https://github.com/neo4j/neo4j-java-driver-spring-boot-starter/tree/master/examples

neo4j@system> :exit

Bye!

$ bin/cypher-shell -u neo4j -p secretpassword

Connected to Neo4j 4.0.0 at bolt://localhost:7687 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@neo4j>

NOTE

In MR2 it is still possible to change your own password when connected to any database using the procedure CALL
dbms.security.changePassword('secretpassword'), but this will be removed before the final release of Neo4j 4.0. Two key
differences between the 3.x and the 4.x way of setting a new password:

● In 4.0 this action must be performed on the system database.
● In 4.0 it is necessary to know and use the original password when setting the new one.

5.7.2. New Cypher Shell Arguments
The new -d and --database arguments have been introduced to connect to a database. If the user does not specify any database, Cypher Shell
connects to the default database (neo4j in fresh installations).

$ bin/cypher-shell --help
usage: cypher-shell [-h] [-a ADDRESS] [-u USERNAME] [-p PASSWORD] [--encryption {true,false}] [-d DATABASE]

[--format {auto,verbose,plain}] [--debug] [--non-interactive] [--sample-rows SAMPLE-ROWS] [--wrap

{true,false}] [-v] [--driver-version] [--fail-fast |

 --fail-at-end] [cypher]

 88 Copyright © 2019 Neo4j, Inc.

...

connection arguments:

 -a ADDRESS, --address ADDRESS

 address and port to connect to (default: bolt://localhost:7687)

 -u USERNAME, --username USERNAME

 username to connect as. Can also be specified using environment variable

NEO4J_USERNAME (default:)

 -p PASSWORD, --password PASSWORD

 password to connect with. Can also be specified using environment variable

NEO4J_PASSWORD (default:)

 --encryption {true,false}

 whether the connection to Neo4j should be encrypted; must be consistent with

Neo4j's configuration (default: true)

 -d DATABASE, --database DATABASE

 database to connect to. Can also be specified using environment variable

NEO4J_DATABASE (default:)

$ bin/cypher-shell -a localhost:7687 -u neo4j -p secretpassword -d system
Connected to Neo4j 4.0.0 at bolt://localhost:7687 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@system>

5.7.3. New Cypher Shell Environment variables
Cypher Shell now recognizes the environment variable NEO4J_DATABASE . If no -d or --database argument is given when starting Cypher Shell, the
value of this environment variable is used to determine which database to connect to.

5.7.4. The neo4j Scheme
Cypher Shell accepts the new neo4j scheme as part of the URI used to connect to the DBMS. See section 5.5. Drivers for information on the neo4j
scheme.

 89 Copyright © 2019 Neo4j, Inc.

$ bin/cypher-shell -a neo4j://localhost:7687 -u neo4j -p secretpassword
Connected to Neo4j 4.0.0 at neo4j://localhost:7687 as user neo4j.

Type :help for a list of available commands or :exit to exit the shell.

Note that Cypher queries must end with a semicolon.

neo4j@neo4j>

5.7.5. The :use Command
See section 3.3.0 Switching Databases for details about this client-side command.

 90 Copyright © 2019 Neo4j, Inc.

5.8. Neo4j Browser
Neo4j Browser in 4.0 MR2 enables the use of multiple databases. The HTTP server responds to the same URL as in previous releases, i.e.
http://server:port/browser :

 91 Copyright © 2019 Neo4j, Inc.

The user can use the neo4j scheme in the connect dialog. See section 5.5. Drivers for information on the neo4j scheme. When first logging in to Neo4j
Browser you get logged in to the default database:

 92 Copyright © 2019 Neo4j, Inc.

5.8.1. Database Selection in Neo4j Browser
Users can issue the :use command to switch databases. See section 3.3.0 Switching Databases for details about this client-side command.
Alternatively, they can use the :dbs command to list the :use commands available, or they can open the sidebar and specify the database to use
from the first combo box:

 93 Copyright © 2019 Neo4j, Inc.

6. SDN-RX

6.1 Introduction

Spring Data Neo4j⚡ RX, or SDN-RX, is a next-generation Spring Data module, created and maintained by Neo4j, in close collaboration with the Pivotal
Spring Data Team.

SDN-RX relies completely on the Neo4j Java Driver, without introducing another "driver" or "transport" layer between the mapping framework and the
driver. The Neo4j Java Driver - sometimes dubbed Bolt or the Bolt driver - is used as a protocol much like JDBC is with relational databases.

Noteworthy features that differentiate SDN-RX from Spring Data Neo4j + OGM are:

● Full support for immutable entities and thus full support for Kotlin’s data classes right from the start.
● Full support for the reactive programming model in the Spring Framework itself and Spring Data.
● Brand new Neo4j client and reactive client feature, resurrecting the idea of a template over the plain driver, easing database access.

SDN-RX is currently developed with Spring Data Neo4j (https://github.com/spring-projects/spring-data-neo4j) in parallel and will eventually replace it
when they are on feature parity in regards of repository support and mapping.

6.1.1. SDN-RX and Neo4j OGM

Neo4j OGM is an Object Graph Mapping library, which is mainly used by Spring Data Neo4j as its backend for the heavy lifting of mapping Nodes and
Relationships into domain object. SDN-RX does not need, and does not support Neo4j-OGM. SDN-RX uses Spring Data’s mapping context exclusively
for scanning classes and building the meta model.

This pins SDN-RX to the Spring eco-systems, and it has several advantages, among them the smaller footprint in regards of CPU and memory usage
and especially all the features of Springs mapping context.

 94 Copyright © 2019 Neo4j, Inc.

https://github.com/spring-projects/spring-data-neo4j

SDN-RX has several features not present in SDN+OGM, notably:

● Full support for Springs reactive story, including reactive transaction.
● Full support for Query By Example.
● Full support for fully immutable entities.
● Support for all modifiers and variations of derived finder methods, including spatial queries.

Additionally, you cannot use both SDN-RX and Spring Data Neo4j simultaneously in a project since they are mutually exclusive.

NOTE SDN-RX does not support connections over HTTP to Neo4j.

6.1.2. SDN-RX and Embedded Neo4j

Embedded Neo4j has multiple facets to it:

● SDN-RX does not provide an embedded instance for your application.
● SDN-RX does not interact directly with an embedded instance. An embedded database is usually represented by an instance of

org.neo4j.graphdb.GraphDatabaseService , and has no Bolt connector out of the box.
● SDN-RX can work with Neo4j’s test harness; the test harness is specially meant to be a drop-in replacement for the real database. For more

information, see Neo4j Client.

6.2 Getting Started
A Spring Boot starter is provided for SDN-RX.

As with any other Spring Boot starter, the only thing you have to do is to include the starter module via your dependency management. If you don’t
configure anything, then the starter assumes bolt://localhost:7687 as Neo4j URI, and a server that has disabled authentication.

 95 Copyright © 2019 Neo4j, Inc.

The SDN-RX starter depends on the starter for the Java Driver, which can be found here:
https://github.com/neo4j/neo4j-java-driver-spring-boot-starter/blob/master/docs/manual.adoc.

Everything regarding configuration for the Java Driver, apply for SDN-RX also.

SDN-RX supports:

● The well-known and understood imperative a.k.a. blocking programming model (much like Spring Data JDBC or JPA).
● Reactive programming based on Reactive Streams, including full support for reactive transactions.

Those are all included in the same binary. The reactive programming model requires a Neo4j 4.0 server on the database side, and reactive Spring on
the other. For examples, see the examples directory here: https://github.com/neo4j/sdn-rx/tree/master/examples

6.2.1. Preparing the Database

For this example, we use the movie graph demo which is available with every Neo4j instance (see https://neo4j.com/developer/movie-database/ for
more information).

If you don’t have a running database, but you have Docker installed you can run:

docker run --publish=7474:7474 --publish=7687:7687 neo4j:4.0.0-alpha09

You can now access the database at http://localhost:7474 . Note that you will be prompted to change your password if this is the first time
accessing this database.

You can now fill your database with some test data, using the movie graph demo.

 96 Copyright © 2019 Neo4j, Inc.

https://github.com/neo4j/neo4j-java-driver-spring-boot-starter/blob/master/docs/manual.adoc
https://github.com/neo4j/sdn-rx/tree/master/examples
https://neo4j.com/developer/movie-database/
http://localhost:7474/

6.2.2. Create a New Spring Boot Project

The easiest way to setup a Spring Boot project is https://start.spring.io/. If you do not want to use the website, the Spring Boot project is also
integrated in the major IDEs.

Add the Spring Web Starter to get all the dependencies needed for creating a Spring based web application. The Spring Initializr will take care of
creating a valid project structure for you, with all the files and settings in place for the selected build tool.

NOTE
Do not select the Spring Data Neo4j dependencies here, as it will get you the previous generation of Spring Data Neo4j including OGM
and additional abstraction over the driver.

6.2.2.1. Maven
You can issue a CURL request against the Spring Initializr to create a basic Maven project:

curl https://start.spring.io/starter.tgz \

 -d dependencies=webflux,actuator \

 -d bootVersion=2.2.0.M4 \

 -d baseDir=Neo4jSpringBootExample \

 -d name=Neo4j%20SpringBoot%20Example | tar -xzvf -

This will create a new folder Neo4jSpringBootExample . As this starter is not yet on the initializer, you’ll have to add the following dependency
manually to your pom.xml file:

<dependency>

 97 Copyright © 2019 Neo4j, Inc.

https://start.spring.io/

<groupId>org.neo4j.springframework.data</groupId>

<artifactId>spring-data-neo4j-rx-spring-boot-starter</artifactId>

<version>1.0.0-alpha03</version>

</dependency>

In case of an existing project, you will also need to add the dependency manually.

6.2.2.2. Gradle
Using an approach similar to the Maven instructions above, you can generate a Gradle project:

curl https://start.spring.io/starter.tgz \

 -d dependencies=webflux,actuator \

 -d type=gradle-project \

 -d bootVersion=2.2.0.M4 \

 -d baseDir=Neo4jSpringBootExampleGradle \

 -d name=Neo4j%20SpringBoot%20Example | tar -xzvf -

The dependency for Gradle looks like this, and must be added to the build.gradle file:

dependencies {

 compile 'org.neo4j.springframework.data:spring-data-neo4j-rx-spring-boot-starter:1.0.0-alpha03'

}

In case of an existing project, you will also need to add the dependency manually.

 98 Copyright © 2019 Neo4j, Inc.

6.2.2.3. Configuration
Now you can open any of those projects in your chosen IDE.

Find application.properties and configure your Neo4j credentials:

org.neo4j.driver.uri=bolt://localhost:7687

org.neo4j.driver.authentication.username=neo4j

org.neo4j.driver.authentication.password=secret

These credentials are the bare minimum of what is required to connect to a Neo4j instance.

NOTE
SDN-RX repositories are automatically enabled by this starter and it is not necessary to add any programmatic configuration of the
driver.

6.2.3. Creating a Domain

Your domain layer should accomplish two things:

● Map your Graph to objects.
● Provide access to objects.

6.2.3.1. Example Node-Entity
SDN-RX supports unmodifiable entities, for both Java and data classes in Kotlin. Therefore, this chapter will focus on immutable entities.

 99 Copyright © 2019 Neo4j, Inc.

NOTE
SDN-RX supports all the same data types that the Neo4j Java Driver supports. For more information, see Example 4.1 here:
https://neo4j.com/docs/driver-manual/current/cypher-values/#driver-neo4j-type-system.
Future versions will support additional converters.

import org.neo4j.springframework.data.core.schema.GeneratedValue;

import org.neo4j.springframework.data.core.schema.Id;

import org.neo4j.springframework.data.core.schema.Node;

import org.neo4j.springframework.data.core.schema.Property;

import org.springframework.data.annotation.PersistenceConstructor;

@Node("Movie")

public class MovieEntity {

@Id @GeneratedValue

private Long id;

private final String title;

@Property("tagline")

private final String description;

public MovieEntity(String title, String description) {

this.id = null;

this.title = title;

this.description = description;

}

public Long getId() {

return id;

}

 100 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/driver-manual/current/cypher-values/#driver-neo4j-type-system

public String getTitle() {

return title;

}

public String getDescription() {

return description;

}

public MovieEntity withId(Long id) {

if (this.id == null) {

return this;

} else {

MovieEntity newObject = new MovieEntity(this.title, this.description);

newObject.id = this.id;

return newObject;

}

}

}

● @Node is used to mark this class as a managed entity. It also is used to configure the Neo4j label. The label defaults to the name of the class, if

you’re just using plain @Node.
● Each entity has to have an ID. The combination of @Id and @GeneratedValue configures SDN-RX to use Neo4j’s internal ID.
● @Property is used as a way to use a different name for the field, rather than for the Graphs property.
● public MovieEntity(String title, String description){} is the constructor to be used by your application code. It sets the ID to

null, as the field containing the internal ID should never be manipulated.
● public MovieEntity withId(Long id) {} creates a new entity and sets the field accordingly, without modifying the original entity, thus

making it immutable.

NOTE
Immutable entities using internally generated IDs are a bit contradictory, as SDN-RX needs a way to set the field with the value generated
by the database.

The same entity using Project Lombok annotations (https://projectlombok.org/) for creating value objects is shown below:

 101 Copyright © 2019 Neo4j, Inc.

https://projectlombok.org/

MovieEntity.java

import lombok.Value;

import org.neo4j.springframework.data.core.schema.GeneratedValue;

import org.neo4j.springframework.data.core.schema.Id;

import org.neo4j.springframework.data.core.schema.Node;

import org.neo4j.springframework.data.core.schema.Property;

@Node("Movie")

@Value(staticConstructor = "of")

public class MovieEntity {

@Id @GeneratedValue

private Long id;

private String title;

@Property("tagline")

private String description;

}

The corresponding entity as a Kotlin Data Class is shown below:

MovieEntity.kt

@Node("Movie")

data class MovieEntity (

 @Id

 @GeneratedValue

 val id: Long? = null,

 102 Copyright © 2019 Neo4j, Inc.

 val title: String,

 @Property("tagline")

 val description: String

)

6.2.3.2. Declaring Spring Data Repositories
There are two options:

● You can work store agnostic with SDN-RX and make your domain specific extends one of:
○ org.springframework.data.repository.Repository

○ org.springframework.data.repository.CrudRepository

○ org.springframework.data.repository.reactive.ReactiveCrudRepository

○ org.springframework.data.repository.reactive.ReactiveSortingRepository

You can select imperative or reactive accordingly.

● Settle on a store-specific implementation, and gain all the methods we support out of the box.

The advantage of the 2nd option is also the biggest disadvantage. Once out, all those methods will be part of your API. Most of the time it’s harder to
take something away, than add. Furthermore, using store specifics leaks your store into your domain. From a performance point of view however,
there is no penalty.

The example below demonstrates the first option, which is a store-agnostic method, based upon the Movie Entities examples above:

MovieRepository.java

import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

 103 Copyright © 2019 Neo4j, Inc.

import org.springframework.data.domain.Example;

import org.springframework.data.repository.reactive.ReactiveCrudRepository;

public interface MovieRepository extends ReactiveCrudRepository<MovieEntity, Long> {

Mono<MovieEntity> findOneByTitle(String title);

Flux<MovieEntity> findAll(Example<MovieEntity> example);

}

NOTE The declaration of these two methods is purely optional; if not needed, don’t add them. These are reused in later examples.

This repository can be used in any Spring component like this:

MovieController.java

import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

import org.neo4j.springframework.data.examples.spring_boot.domain.MovieEntity;

import org.neo4j.springframework.data.examples.spring_boot.domain.MovieRepository;

import org.springframework.http.MediaType;

import org.springframework.web.bind.annotation.DeleteMapping;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.PutMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

@RestController

 104 Copyright © 2019 Neo4j, Inc.

@RequestMapping("/movies")

public class MovieController {

private final MovieRepository movieRepository;

public MovieController(MovieRepository movieRepository) {

this.movieRepository = movieRepository;

}

@PutMapping

Mono<MovieEntity> createOrUpdateMovie(@RequestBody MovieEntity newMovie) {

return movieRepository.save(newMovie);

}

@GetMapping(value = { "", "/" }, produces = MediaType.TEXT_EVENT_STREAM_VALUE)

Flux<MovieEntity> getMovies() {

return movieRepository

.findAll();

}

@GetMapping("/by-title")

Mono<MovieEntity> byTitle(@RequestParam String title) {

return movieRepository.findOneByTitle(title);

}

@DeleteMapping("/{id}")

Mono<Void> delete(@PathVariable Long id) {

return movieRepository.deleteById(id);

}

}

NOTE
Testing reactive code is done with a reactor.test.StepVerifier .
For more information, see the Project Reactor documentation: https://projectreactor.io/docs/core/release/reference/#testing

 105 Copyright © 2019 Neo4j, Inc.

https://projectreactor.io/docs/core/release/reference/#testing

6.3. Neo4j Client

SDN-RX comes with a Neo4j client, providing a human-readable layer on top of the Neo4j Java driver.

It has the following main goals:

● Integrate into Springs transaction management, for both imperative and reactive scenarios.
● Participate in JTA-Transactions if necessary.
● Provide a consistent API for both imperative and reactive scenarios.
● Not add any mapping overhead.

SDN-RX relies on all those features and uses them to fulfill it’s entity mapping features.

The Neo4j Java Driver (https://github.com/neo4j/neo4j-java-driver) is a versatile tool and provides an asynchronous API, in addition to the imperative
and reactive versions. SDN-RX uses the Java driver as directly as possible, while also being as user-friendly and idiomatic as possible.

The Neo4j client comes in two flavors:

● org.neo4j.springframework.data.core.Neo4jClient

● org.neo4j.springframework.data.core.ReactiveNeo4jClient

While both versions provide an API using the same vocabulary and syntax, they are not API compatible. Both versions feature the same, fluent API to
specify queries, bind parameters and extract results.

6.3.1. Imperative and Reactive

Interactions with a Neo4j client usually ends with a call to:

● fetch().one()

 106 Copyright © 2019 Neo4j, Inc.

https://github.com/neo4j/neo4j-java-driver

● fetch().first()

● fetch().all()

● run()

The imperative version will interact at this moment with the database and get the requested results or summary, wrapped in a Optional<> or a
Collection .

The reactive version will in contrast return a publisher of the requested type. Interaction with the database and retrieval of the results will not happen
until the publisher is subscribed to. The publisher can only be subscribed once.

6.3.2. Getting an Instance of the Client

With SDN-RX, both clients depend on a configured driver instance. The following will create an instance of the imperative Neo4j client:

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.springframework.data.core.Neo4jClient;

public class Demo {

 public static void main(String...args) {

 Driver driver = GraphDatabase

 .driver("neo4j://localhost:7687", AuthTokens.basic("neo4j", "secret"));

 Neo4jClient client = Neo4jClient.create(driver);

 }

}

 107 Copyright © 2019 Neo4j, Inc.

NOTE The driver can only open a reactive session against a 4.0 database and will fail with an exception on any lower version.

The following will create an instance of the reactive Neo4j client:

import org.neo4j.driver.AuthTokens;

import org.neo4j.driver.Driver;

import org.neo4j.driver.GraphDatabase;

import org.neo4j.springframework.data.core.ReactiveNeo4jClient;

public class Demo {

 public static void main(String...args) {

 Driver driver = GraphDatabase

 .driver("neo4j://localhost:7687", AuthTokens.basic("neo4j", "secret"));

 ReactiveNeo4jClient client = ReactiveNeo4jClient.create(driver);

 }

}

NOTE
Make sure you use the same driver instance for the client as you used for providing a Neo4jTransactionManager or
ReactiveNeo4jTransactionManager , in case you have enabled transactions.
The client won’t be able to synchronize transactions if you use another instance of a driver.

The Spring Boot starter provides ready-to-use beans of the Neo4j client that fit the environment (imperative or reactive) and you usually don’t have to
configure your own instance.

 108 Copyright © 2019 Neo4j, Inc.

6.3.3. Usage

6.3.3.1. Selecting the Target Database
The Neo4j client is prepared for use with database management features of Neo4j 4.0; the client uses the default database unless you specify
otherwise. The fluent API of the client is enabled to specify the target database exactly once, after the declaration of the query to execute.

The example below demonstrates this with a reactive client, and a target database named neo4j :

Flux<Map<String, Object>> allActors = client

.query("MATCH (p:Person) RETURN p")

.in("neo4j")

.fetch()

.all();

6.3.3.2. Specifying Queries
The interaction with the clients starts with a query. A query can be defined by a plain String or a Supplier<String> . The supplier will be evaluated
as late as possible and can be provided by any query builder. For example:

Mono<Map<String, Object>> firstActor = client

.query(() -> "MATCH (p:Person) RETURN p")

.fetch()

.first();

 109 Copyright © 2019 Neo4j, Inc.

6.3.3.3. Retrieving Results
As the previous examples show, the interaction with the client always ends with a call to fetch and specifying how many results shall be received. Both
reactive and imperative client offer:

● one() - Expect exactly one result from the query.
● first() - Expect results and return the first record.
● all() - Retrieve all records returned.

The imperative client returns Optional<T> and Collection<T> respectively, while the reactive client returns Mono<T> and Flux<T> , the later one
being executed only when subscribed to.

If you don’t expect any results from your query, then use run() after specifying the query.

The following example demonstrates retrieving result summaries in a reactive way:

Mono<ResultSummary> summary = reactiveClient

 .query("MATCH (m:Movie) where m.title = 'Aeon Flux' DETACH DELETE m")

 .run();

summary

 .map(ResultSummary::counters)

 .subscribe(counters ->

 System.out.println(counters.nodesDeleted() + " nodes have been deleted")

);

The actual query is triggered above by subscribing to the publisher.

 110 Copyright © 2019 Neo4j, Inc.

The following example demonstrates retrieving result summaries in an imperative way:

ResultSummary resultSummary = imperativeClient

.query("MATCH (m:Movie) where m.title = 'Aeon Flux' DETACH DELETE m")

.run();

SummaryCounters counters = resultSummary.counters();

System.out.println(counters.nodesDeleted() + " nodes have been deleted")

In this example, the query is triggered immediately.

6.3.3.4. Mapping Parameters
Queries can contain named parameters ($someName), and the Neo4j client allows for comfortable binding.

NOTE
The client doesn’t check whether all parameters are bound or whether there are too many values - that is left to the driver. However, the
client does prevent you from using a parameter name twice.

You can either map simple types that the Java driver understands or complex classes. For more information, see
https://neo4j.com/docs/driver-manual/current/cypher-values/#driver-neo4j-type-system, where simple types are described.

Map<String, Object> parameters = new HashMap<>();

parameters.put("name", "Li.*");

Flux<Map<String, Object>> directorAndMovies = client

.query(

"MATCH (p:Person) - [:DIRECTED] -> (m:Movie {title: $title}), (p) - [:WROTE] -> (om:Movie) " +

"WHERE p.name =~ $name " +

" AND p.born < $someDate.year " +

 111 Copyright © 2019 Neo4j, Inc.

https://neo4j.com/docs/driver-manual/current/cypher-values/#driver-neo4j-type-system

"RETURN p, om"

)

.bind("The Matrix").to("title")

.bind(LocalDate.of(1979, 9, 21)).to("someDate")

.bindAll(parameters)

.fetch()

.all();

In the example above, there is a fluent API for binding simple types. Alternatively, parameters can be bound via a map of named parameters.

SDN-RX does a lot of complex mapping and it uses the same API that you can use from the client.

You can provide a Function<T, Map<String, Object>> for any given domain object in order to map those domain objects to parameters that
the driver can understand.

The following example demonstrates a domain type:

public class Director {

 private final String name;

 private final List<Movie> movies;

 Director(String name, List<Movie> movies) {

 this.name = name;

 this.movies = new ArrayList<>(movies);

 }

 public String getName() {

 return name;

 }

 112 Copyright © 2019 Neo4j, Inc.

 public List<Movie> getMovies() {

 return Collections.unmodifiableList(movies);

 }

}

public class Movie {

 private final String title;

 public Movie(String title) {

 this.title = title;

 }

 public String getTitle() {

 return title;

 }

}

The mapping function has to fill in all named parameters that might occur in the query. The following example demonstrates how to use a mapping
function for binding domain objects:

Director joseph = new Director("Joseph Kosinski",

 Arrays.asList(new Movie("Tron Legacy"), new Movie("Top Gun: Maverick")));

Mono<ResultSummary> summary = client

 .query(""

 + "MERGE (p:Person {name: $name}) "

 + "WITH p UNWIND $movies as movie "

 + "MERGE (m:Movie {title: movie}) "

 + "MERGE (p) - [o:DIRECTED] -> (m) "

)

 113 Copyright © 2019 Neo4j, Inc.

 .bind(joseph).with(director -> {

 Map<String, Object> mappedValues = new HashMap<>();

 List<String> movies = director.getMovies().stream()

 .map(Movie::getTitle).collect(Collectors.toList());

 mappedValues.put("name", director.getName());

 mappedValues.put("movies", movies);

 return mappedValues;

 })

 .run();

In the example, the with method enables you to specify the binder function.

6.3.3.5. Working with Result Objects
Both clients return collections or publishers of maps (Map<String, Object>). Those maps correspond exactly with the records that a query might
have produced.

In addition, you can plugin your own BiFunction<TypeSystem, Record, T> through fetchAs to reproduce your domain object.

Mono<Director> lily = client

 .query(""

 + " MATCH (p:Person {name: $name}) - [:DIRECTED] -> (m:Movie)"

 + "RETURN p, collect(m) as movies")

 .bind("Lilly Wachowski").to("name")

 .fetchAs(Director.class).mappedBy((TypeSystem t, Record record) -> {

 List<Movie> movies = record.get("movies")

 .asList(v -> new Movie((v.get("title").asString())));

 return new Director(record.get("name").asString(), movies);

 })

 .one();

TypeSystem gives access to the types the underlying Java driver used to fill the record.

 114 Copyright © 2019 Neo4j, Inc.

6.3.3.6. Interacting Directly with the Driver While Using Managed Transactions
In case you don’t want the opinionated "client" approach of the Neo4jClient or the ReactiveNeo4jClient , you can have the client delegate all
interactions with the database to your code. The interaction after the delegation is slightly different with the imperative and reactive versions of the
client.

The imperative version takes in a Function<StatementRunner, Optional<T>> as a callback. Additionally, it is possible to return an empty
optional.

The following example demonstrates how to delegate database interaction to an imperative StatementRunner :

Optional<Long> result = client

 .delegateTo((StatementRunner runner) -> {

 // Do as many interactions as you want

 long numberOfNodes = runner.run("MATCH (n) RETURN count(n) as cnt")

 .single().get("cnt").asLong();

 return Optional.of(numberOfNodes);

 })

 // .in("aDatabase")

 .run();

The following example demonstrates how to delegate database interaction to a reactive RxStatementRunner :

Mono<Integer> result = client

 .delegateTo((RxStatementRunner runner) ->

 Mono.from(runner.run("MATCH (n:Unused) DELETE n").summary())

 .map(ResultSummary::counters)

 .map(SummaryCounters::nodesDeleted))

 115 Copyright © 2019 Neo4j, Inc.

 // .in("aDatabase")

 .run();

In both of the examples above, the types of runner has only been stated to provide more clarity.

6.4. Migrating from SDN+OGM to SDN-RX

NOTE
As the relationship mapping of SDN-RX is not yet fully complete, those topics are not addressed here.
Additionally, SDN-RX is still in alpha, so things are liable to change in the near future. The content in this chapter should be seen as an
ongoing effort, that can help when considering your current state and where you might want to go.

6.4.1. Known Issues with Past SDN+OGM Migrations
The main issues observed when migrating from older versions of Spring Data Neo4j to newer ones are:

● Skipping more than one major upgrade:
While Neo4j-OGM can be used stand-alone, Spring Data Neo4j cannot. It depends, to a large extent, on the Spring Data and therefore, on the
Spring Framework itself, which eventually affects large parts of your application. Depending on how the application has been structured, and
how much any of the framework part leaked into your business code, the more you have to adapt your application.
It is even more challenging when you have more than one Spring Data module in your application, and if you accessed a relational database in
the same service layer as your graph database.
Updating two object mapping frameworks can also be challenging.

● Relying on a embedded database configured through Spring Data itselfR:

The embedded database in a SDN+OGM project is configured by Neo4j-OGM. For example, if you want to upgrade from Neo4j 3.0 to 3.5, you
can’t without upgrading your whole application. If you choose to embed a database into your application, you tie yourself into the modules that
configure this embedded database. To have another embedded database version, you will have to upgrade the module that configured it,

 116 Copyright © 2019 Neo4j, Inc.

because the old one does not support the new database. As there is always a Spring Data version corresponding to Neo4j-OGM, you would
have to upgrade that as well. Spring Data, however, depends on Spring Framework and then the arguments from the first bullet apply.

● Being unsure about which building blocks to include:

It’s not easy to get the terms right. The building blocks of an SDN+OGM setting are described here:
https://michael-simons.github.io/neo4j-sdn-ogm-tips/what_are_the_building_blocks_of_sdn_and_ogm.html.
It may be that you are dealing with a lot of conflicting dependencies.

Backed by those observations, we recommend to make sure you’re using only the Bolt or HTTP transport in your current application before switching
from SDN+OGM to SDN-RX. Thus, your application and the access layer of your application is to a large extent independent from the databases
version. From that state, consider moving from SDN+OGM to SDN-RX.

6.4.2. Preparation for Migration from SDN+OGM Lovelace or SDN+OGM Moore
Prior to making the switch, you will need to ensure that your application runs against Neo4j in server mode over the Bolt protocol. There are three
possible states for your application:

NOTE The Lovelace release train corresponds to SDN 5.1.x and OGM 3.1.x, while the Moore is SDN 5.2.x and OGM 3.2.x.

● Using Neo4j embedded

If you have added org.neo4j:neo4j-ogm-embedded-driver and org.neo4j:neo4j to you project and you are starting the database via
OGM facilities, you will have to remove those dependencies since this is no longer supported. You will have to set up a standard Neo4j server
instead (both stand-alone and cluster are supported).

● Using the HTTP Transport
If you have added org.neo4j:neo4j-ogm-http-driver and configured a URL like http://user:password@localhost:7474 , you will
need to remove this dependency and configure a Bolt url like bolt://localhost:7687 instead, or use the new neo4j:// protocol, which
also takes care of routing.

 117 Copyright © 2019 Neo4j, Inc.

https://michael-simons.github.io/neo4j-sdn-ogm-tips/what_are_the_building_blocks_of_sdn_and_ogm.html
http://user:password@localhost:7474/

● Using Bolt indirectly
If you are using a default SDN+OGM project, you can keep your existing URL since this uses org.neo4j:neo4j-ogm-bolt-driver and thus
indirectly, the pure Java Driver.

6.4.3 Migrating
Once you have made sure that your SDN+OGM application works over Bolt as expected, you can start migrating to SDN-RX by the following steps:

1. Remove all org.neo4j:neo4j-ogm-* dependencies.
2. Remove org.springframework.data:spring-data-neo4j .
3. Adapt the properties for the URL and authentication as per the example below:

a. # Old

b. spring.data.neo4j.embedded.enabled=false # No longer support

c. spring.data.neo4j.uri=bolt://localhost:7687

d. spring.data.neo4j.username=neo4j

e. spring.data.neo4j.password=secret

f.

g. # New

h. org.neo4j.driver.uri=bolt://localhost:7687

i. org.neo4j.driver.authentication.username=neo4j

j. org.neo4j.driver.authentication.password=secret

NOTE The new properties above might change in the future when SDN-RX and the driver will eventually replace the old setup.

4. Add the new dependencies according to the previous sections on Gradle and Maven.

Keep in mind that configuring SDN-RX through a ord.neo4j.ogm.config.Configuration bean is not supported. Instead, all configuration of the
driver is done through our new starter (see section 6.2.2 for more information). Configuration of other properties than the ones mentioned above can
be done through standard Spring Boot means.

 118 Copyright © 2019 Neo4j, Inc.

You can now also replace the annotations:

Old New

org.neo4j.ogm.annotation.NodeEntity org.neo4j.springframework.data.core.schema.Node

org.neo4j.ogm.annotation.GeneratedValue org.neo4j.springframework.data.core.schema.GeneratedValue

org.neo4j.ogm.annotation.Id org.neo4j.springframework.data.core.schema.GeneratedValue

org.neo4j.ogm.annotation.Property org.neo4j.springframework.data.core.schema.Property

org.neo4j.ogm.annotation.Relationship org.neo4j.springframework.data.core.schema.Relationship

NOTE
Several Neo4j-OGM annotations do not yet have a corresponding annotation in SDN-RX, and some never will.
We will add to this list when we add more features.

 119 Copyright © 2019 Neo4j, Inc.

7. Other Features

7.1. Index Population for the Native Index Provider

Index population is the task executed by the CREATE INDEX and CREATE CONSTRAINT commands and is done automatically by the DBMS when the
index is missing. This task is non-blocking when it refers to a CREATE INDEX command and blocking when it refers to a CREATE CONSTRAINT
command.

7.1.1. Improvement in Index Population
A major improvement in index population is the new index population algorithm that provides significant time-saving benefits. You can see the results
for yourself by creating an index on a set of nodes with a given label and property/properties and then check the time consumed by the creation. This
can be done in two different ways:

1. By checking the debug.log file, which contains entries created by the index population functions.
2. By executing the awaitIndex procedure. You should consider that this procedure blocks the client connection until the index has been fully

built. The following procedure will return the time necessary to build the index:

neo4j@neo4j> CREATE INDEX ON :N1(p0);
0 rows available after 83 ms, consumed after another 0 ms

Added 1 indexes

neo4j@neo4j> CALL db.awaitIndex(":N1(p0)");
0 rows available after 29487 ms, consumed after another 0 ms

neo4j@neo4j>

 120 Copyright © 2019 Neo4j, Inc.

7.2. Native Index Provider Max Key Size

In Neo4j 4.0 MR2, the native index provider has extended the maximum key size from approximately 4KB to approximately 8KB. This size should
satisfy the vast majority of the use cases.

NOTE In case of list properties, the key size considers all the values in the list.

7.3. Lucene Index Provider

Neo4j 4.0 MR2 includes the Lucene Index Provider for full-text search. The index provider is now based on the latest stable version of Lucene, 8.1.0.

 121 Copyright © 2019 Neo4j, Inc.

